
PATH BASED EQUIVALENCE CHECKING OF PETRI NET REPRESENTATION

OF PROGRAMS FOR TRANSLATION VALIDATION

Soumyadip Bandyopadhyay

PATH BASED EQUIVALENCE CHECKING OF PETRI NET REPRESENTATION

OF PROGRAMS FOR TRANSLATION VALIDATION

Thesis submitted in partial fulfillment
of the requirements for the award of the degree

of

Doctor of Philosophy

by

Soumyadip Bandyopadhyay

Under the supervision of

Dr. Chittaranjan Mandal
and

Dr. Dipankar Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

September 2015

c
 2015 Soumyadip Bandyopadhyay. All Rights Reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Path Based Equivalence Checking of Petri
Net Representation of Programs for Translation Validation" submitted by
Soumyadip Bandyopadhyay to the Indian Institute of Technology, Kharag-
pur, for the award of the degree of Doctor of Philosophy has been accepted
by the external examiners and that the student has successfully defended the
thesis in the viva-voce examination held today.

(Member of the DSC) (Member of the DSC)

(Member of the DSC) (Member of the DSC)

(Supervisor) (Supervisor)

(External Examiner) (Chairman)

Date:

CERTIFICATE

This is to certify that the thesis entitled “Path Based Equivalence Check-
ing of Petri Net Representation of Programs for Translation Validation”,
submitted by Soumyadip Bandyopadhyay to Indian Institute of Technology,
Kharagpur, is a record of bona fide research work under our supervision and
we consider it worthy of consideration for the award of the degree of Doctor
of Philosophy of the Institute.

Chittaranjan Mandal
Professor
CSE, IIT Kharagpur

Dipankar Sarkar
Professor
CSE, IIT Kharagpur

Date:

DECLARATION

I certify that

(a) The work contained in the thesis is original and has been done by myself
under the general supervision of my supervisors.

(b) The work has not been submitted to any other Institute for any degree or
diploma.

(c) I have followed the guidelines provided by the Institute in writing the
thesis.

(d) I have conformed to the norms and guidelines given in the Ethical Code
of Conduct of the Institute.

(e) Whenever I have used materials (data, theoretical analysis, and text)
from other sources, I have given due credit to them by citing them in
the text of the thesis and giving their details in the references.

(f) Whenever I have quoted written materials from other sources, I have put
them under quotation marks and given due credit to the sources by citing
them and giving required details in the references.

Soumyadip Bandyopadhyay

ACKNOWLEDGEMENT

While I complete the thesis, I express my deep gratitude to my supervisors
Prof. Dipankar Sarkar and Prof. Chittaranjan Mandal, they have been source
of clarity from my dilemmas, encouragement, critical thinking, and was a con-
stant guidance at all stages of my thesis. I am indebted to them for taking
much passion to read each and every sentence carefully; that has helped me a
lot to shape this thesis.

Equally, I acknowledge my sincere gratitude to Tata Consultancy Service
for their fellowship that partially funded my research work and provided gen-
erous travel grants and stipend throughout the Ph.D period.

I owe my thank to my friends Kunal, Sudakhina di, Soumyajit da, Chandan
da, Debjit and others for making the lab most enjoyable place in Kharagpur. I
thank Debjit for all his system and LaTeX related supports.

My stay in Kharagpur was extremely pleasurable for the constant moral
support of my friends Rohan, Soumen, Arindam, Anupam, Tuhin da, Dhole,
Saptak, Pradip da, Russel, Joy da, Gopal da, Surojit, Karati, Sumit (Hyda),
Tiru Da, Manjira, Ritwika, Sayan da, Sandipan (Jinta), Bappa, Shubu Da, Pra-
sun da, Bishu, Pralay da and many others. They are the source of my continu-
ous motivation.

I acknowledge google.com, which has helped me in searching most of the
research papers. A Special thank to JSTOR which is the source of another
(re)search in social science during my stay in Kharagpur.

Last but not the least, I am indebted to my Parents, Prof. Sabyasachi Sen-
gupta, Deben Samui, Nilanjana, Late Sailen Jha, Prof.Santonu Sarkar, Prateek,
Prof. Deshpandey,Prof. Ashwin Srinivashan, Prof. A Baskar, Prof.Joshi and
the other members of my family. They have believed in me through all the
stages of my thesis. They have been my strength and support system in each
and every step of my academic career.

Soumyadip Bandyopadhyay

ABSTRACT

A user written application program goes through significant optimizing and
parallelizing transformations, both (compiler) automated and human guided,
before being mapped to an architecture. Formal verification of these transfor-
mations is crucial to ensure that they preserve the original behavioural spec-
ification. PRES+ model (Petri net based Representation of Embedded Sys-
tems) encompassing data processing is used to model parallel behaviours more
vividly. Being value based with a natural capability of capturing parallelism,
PRES+ models depict such data dependencies more directly; accordingly, they
are likely to be more convenient as the intermediate representations (IRs) of
both source and transformed codes for translation validation than strictly se-
quential, variable-based IRs like Finite State Machines with Data path (FS-
MDs) (which are essentially sequential control and data flow graphs (CD-
FGs)). This thesis presents two translation validation techniques for verify-
ing optimizing and parallelizing code transformations by checking equivalence
between two PRES+ models, one representing the source code and the other
representing its optimized and (or) parallelized version.

Any path based (symbolic) program analysis method consists in introduc-
ing cut-points in the loops so that each loop is cut in at least one cut-point; this
step permits us to visualize any computation of a program as a sequence of fi-
nite paths. Once computations are posed in terms of paths in the above manner,
a path based equivalence checking strategy consists in finding equivalent paths
in the models. Unlike sequential CDFG models like FSMDs, for PRES+ mod-
els, such a sequence is expected to have parallel paths. It is, however, found
that apparently cutting only the loops is not adequate to capture a computation
as a sequence of parallel paths. The dissertation first describes a method of
introducing cut-points so that a computation can be posed as a sequence of
parallel paths. This method is referred to as dynamic cut-point induced path
based equivalence checking � “dynamic” because additional cut-points over
and above those introduced to cut the loops are needed for the purpose and the
method entails a symbolic execution of the model keeping track of the tokens
and disregarding the symbolic values. Subsequently, we also reveal that it is
possible to have a valid path based equivalence checking strategy even when
the conventional approach of introducing cut-points only to cut the loops is
followed. This method is referred to as static cut-point induced path based
equivalence checking.

Correctness and complexity of the two methods have been treated formally.
The methods have been implemented and tested and compared on several se-
quential and parallel benchmarks. While underscoring the effectiveness of
equivalence checking as a method for verification of machine independent op-
timizing and parallelizing passes of compilers, the dissertation discusses some
limitations of the work and identifies some future directions in which it can be
enhanced.

viii

Keywords: Translation Validation, Equivalence Checking, PRES+ Model
(Petri net based Representation of Embedded Systems), Path Based Program
Analysis, Finite State Machine with Datapath (FSMD), Control and Data Flow
Graph (CDFG).

Contents

Abstract vii

Table of Contents ix

List of Symbols xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Literature Survey . 2

1.1.1 Code motion transformations 3
1.1.2 Loop transformations . 3
1.1.3 Parallelizing transformations 4
1.1.4 Techniques for verification of behavioural transformations . . 5
1.1.5 Objective of the work . 6

1.2 Contributions of the thesis . 7
1.2.1 Dynamic Cut-point Induced Path Based Equivalence Check-

ing Method . 7
1.2.2 Static Cut-point Induced Path Based Equivalence Checking . 9
1.2.3 Thesis Organization . 10

2 Literature Survey 13
2.1 Verification techniques for Petri net based models 13
2.2 Code motion transformations . 14

2.2.1 Applications of code motion transformations 14
2.2.2 Verification of code motion transformations 17

2.3 Several parallelizing transformations 20
2.3.1 Verification of parallelizing transformations 21

2.4 Conclusion . 22

3 PRES+ models and their computations 23
3.1 The PRES+ model . 23
3.2 Computations in a PRES+ model . 25

ix

x CONTENTS

3.3 Computational equivalence between two PRES+ models 37
3.4 Restrictions of the model and their implications 40
3.5 Conclusion . 43

4 Dynamic cut-point induced path construction method 45
4.1 Computation paths of a PRES+ model 45

4.1.1 Characterization of a path 54
4.1.2 Computation in terms of concatenation of parallel paths . . . 55
4.1.3 Equivalence checking using paths – An Example 60

4.2 Path construction algorithm . 62
4.2.1 Termination of the path construction algorithm 65
4.2.2 Complexity analysis of the path construction algorithm 68
4.2.3 Soundness of the path construction algorithm 70
4.2.4 Completeness of the path construction algorithm 73

4.3 Experimental Results . 74
4.3.1 Experimentation using hand constructed models 75
4.3.2 Experimentation using an automated model constructor 88

4.4 Conclusion . 89

5 DCP Induced Path Based Equivalence Checking Method 91
5.1 Validity of dynamic cut-point induced path based equivalence checking 91
5.2 An Equivalence Checking Method 96

5.2.1 Termination of the equivalence checking algorithm 101
5.2.2 Complexity analysis of the equivalence checking algorithm . . 102
5.2.3 Soundness of the equivalence checking algorithm 113

5.3 Experimental Results . 119
5.3.1 Experimentation using hand constructed models 119
5.3.2 Experimentation using the automated model constructor . . . 123
5.3.3 Experimental results after introducing errors 124

5.4 Conclusion . 126

6 SCP Induced Path Based Equivalence Checking Method 129
6.1 Model paths using static cut-points only 129
6.2 Capturing any computation in terms of Paths 132

6.2.1 Validity of Static cut-point induced path based equivalence
checking method . 140

6.3 Path construction algorithm . 146
6.3.1 Termination and complexity analysis of the path construction

algorithm . 150
6.3.2 Soundness of the path construction algorithm 150
6.3.3 Completeness of the path construction algorithm 153

6.4 Static equivalence checking . 153
6.4.1 Equivalence Checking Algorithm 154
6.4.2 Termination of the equivalence checking algorithm 161
6.4.3 Complexity analysis of the equivalence checking algorithm . . 162
6.4.4 Soundness of the equivalence checking algorithm 163

6.5 Experimental Results . 164

CONTENTS xi

6.5.1 Experimentation using hand constructed models 164
6.5.2 Experimentation using the automated model constructor . . . 169
6.5.3 Experimental results after introducing errors 170

6.6 Conclusion . 170

7 Conclusion 173
7.1 Contributions . 174
7.2 Comparison to related work . 178
7.3 Scope for future work . 180
7.4 Conclusion . 182

A Appendix 185
A.1 List of examples . 185
A.2 List of erroneous program . 193
A.3 List of PRES+ models . 195

Bibliography 215

List of Symbols

N0, N1 Petri net based Representation of Embedded System (PRES+) model . . 23
P Set of places of a PRES+ model . 23
V Set of variables . 23
fpv Place to variable mapping . 23
T Set of transitions of a PRES+ model . 24
I Flow relation from a place to a transition . 24
O Flow relation from a transition to a place . 24
inP Set of in-ports . 24
outP Set of out-ports . 24
�t Pre-places of the transition t . 24
t� Post-places of the transition t . 24
�p Pre-transitions of the place p . 24
p� Post-transitions of the place p . 24
gt Associated guard condition with the transition t . 24
ft Associated function with the transition t . 24
M0 Initial marking . 37
M+ Successor marking . 26
ti � t j ti succeeds t j . 27
µp Computations of a PRES+ model . 29
ti � t j ti is parallel with t j . 27
Rµp Condition of execution . 29
rµp Data transformation . 29
fin In-port bijection . 37
fout Out-port bijection . 37
µ0 ' µ1 Computational equivalence . 37
N0 v N1 Containment . 38
Mp Set of all computations . 46
α Path α of a PRES+ model . 48
Rα Condition of execution along the path α . 54
rα Data transformation along the path . 54
Π Path cover . 59
αi � α j A path αi succeeds a path α j . 55
αi � α j αi and α j are parallel paths . 56
Q Set of paths . 58

xiii

xiv CONTENTS

Mh Marking at hand . 62
Te Set of enabled transitions . 63
Tsh Sequence of sets of concurrent transitions . 63
Rα ' Rβ Condition of execution of two paths α and β are equivalent 92
rα ' rβ Data transformations of two paths α and β are equivalent 92
α' β α and β are equivalent . 92
ηp Sets of corresponding places . 91
ηt Set of corresponding transitions . 92
E Set of equivalent paths . 97
C A parallel combination of concatenated paths . 117
last(α1) Last member of the path α . 92
α� Post-places of the path α . 48
�α Pre-places of the path α . 48
µr

p Reordered sequence . 135
µjj Parallelized version of a computation . 141
/0 The empty set . 27

List of Figures

3.1 Places and transitions in a PRES+ model. 26
3.2 Computation in a PRES+ model. 29
3.3 PRES+ model snapshots for various high level language constructs. . 32
3.4 A simple program . 34
3.5 A PRES model. 35
3.6 Computational equivalence of two PRES+ models. 38

4.1 Need of Paths of a PRES+ model. 46
4.2 Paths of a PRES+ model. 47
4.3 Dynamic cut-point introduction . 52
4.4 Computation of the characteristics of a path. 55
4.5 Concatenated Path of a PRES+ model. 57
4.6 Initial and Transformed Behaviour. 60
4.7 Call graph of path construction algorithm 64
4.8 Experimentation using hand constructed models 75
4.9 Experimentation using automated model constructor 75
4.10 Source program of MODN . 78
4.11 PRES+ models corresponding to MODN source program 81
4.12 Trimmed version of MODN . 82
4.13 PRES+ models corresponding to MODN trimmed transformed programs 83
4.14 Output of DCP induced path construction module 84
4.15 Source and transformed programs of MINANDMAX-P 86
4.16 Schematic of PRES+ models for MINANDMAX-P source and trans-

formed programs . 87
4.17 PRES+ subnet corresponding to MAX function 88

5.1 Code motion transformation for parallel programs 95
5.2 An Illustrative Example for Equivalence Checking 96
5.3 Call Graph for the Verification Algorithm 100
5.4 Output of DCPEQX module for the MODN example 122
5.5 (a) Transformed program using SPARK compiler; (b) the erroneous

version . 127
5.6 PLuTo Bug: (a) Source program – (b) transformed program 127
5.7 Output of error detection of DCPEQX module for the MODN example . . 128

xv

xvi LIST OF FIGURES

6.1 SCP Induced Paths of a PRES+ Model. 130
6.2 Modified Path for SCP Method. 131
6.3 SCP Induced Paths of a PRES+ model. 133
6.4 Call graphs for path construction method (a) for dynamic cut-points,

and for (b) static cut-points . 146
6.5 Code motion across loop transformation. 156
6.6 Illustrative example for the equivalence checking algorithm. 156
6.7 A thread level parallelizing transformation–(a) Ps: source program

and (b) Pt : transformed program. 158
6.8 Illustrative example for validation of a parallelizing transformation. . 158
6.9 Code motion transformation for parallel programs. 161
6.10 Initial and transformed behaviour of PRES+ models. 162
6.11 Output of Static Cut-point Induced Path Constructor 165
6.12 Output of SCPEQX module for the MODN example 168

A.1 SPARK output of MODN . 185
A.2 Original and transformed program of GCD 186
A.3 Original and transformed program of DCT 187
A.4 Original and transformed program of TLC 188
A.5 Original and transformed program of SUMOFDIGITS 189
A.6 Original and transformed program of PERFECT 189
A.7 Original and transformed program of LCM 190
A.8 Source and transformed program of LRU 191
A.9 Original and transformed program of PRIMEFAC 192
A.10 Correct and erroneous program of TLC 193
A.11 Correct and erroneous program of LRU 194
A.12 Correct and erroneous program of MINMAX 195
A.13 PRES+ model for MODN original using automated model constructor 196
A.14 PRES+ model for MODN transformed using automated model con-

structor . 197
A.15 PRES+ model for sum of the digits (SOD) original 198
A.16 PRES+ model for sum of the digits (SOD) transformed 199
A.17 PRES+ model for GCD original . 200
A.18 PRES+ model for GCD transformed 201
A.19 PRES+ model for DCT original . 202
A.20 PRES+ model for DCT transformed 203
A.21 PRES+ model for TLC original . 204
A.22 PRES+ model for TLC transformed 205
A.23 PRES+ model for PERFECT original 206
A.24 PRES+ model for PERFECT transformed 207
A.25 PRES+ model for PRIMEFAC original 208
A.26 PRES+ model for PRIMEFAC transformed 209
A.27 PRES+ model for LCM original . 210
A.28 PRES+ model for LCM transformed 211
A.29 PRES+ model for LRU original . 212
A.30 PRES+ model for LRU transformed 213

List of Tables

4.1 Experimentation with sequential transformations. 76
4.2 DCP induced path construction times for hand constructed models of

sequential examples . 80
4.3 Transformations carried out using parallelizing compilers 80
4.4 Characterization of parallel examples 86
4.5 DCP induced path construction times for hand constructed models of

parallel examples . 87
4.6 DCP induced path construction times for sequential examples using

automated model constructor . 90

5.1 DCP induced equivalence checking times for hand constructed models
of sequential examples . 121

5.2 DCP induced equivalence checking times for hand constructed models
of parallel examples . 121

5.3 DCP induced equivalence checking times for sequential examples us-
ing automated model constructor . 124

5.4 Non-equivalence checking times for faulty translations 125

6.1 SCP induced path construction times for hand constructed models of
sequential examples . 166

6.2 SCP induced path construction times for hand constructed models of
parallel examples . 166

6.3 Equivalence checking results for several sequential examples using
hand constructed models . 167

6.4 Equivalence checking results for several parallel examples using hand
constructed models . 167

6.5 Equivalence checking results for several sequential examples using
automated model constructor . 169

6.6 Non-Equivalence checking times for faulty translations 170

xvii

Chapter 1

Introduction

Recent advancement of multi-core and multi-processor systems has enabled incor-

poration of concurrent applications through extensive optimizing transformations for

better time performance and resource utilization [56]. Several code transformation

techniques such as, code motions, common sub-expression elimination, dead code

elimination, etc., several loop based transformation techniques such as, un-switching,

reordering, skewing, tiling, unrolling, etc., and several thread level parallelizing trans-

formations such as, loop distribution, loop parallelizing [6], etc., may be applied on

the application programs at the prepossessing stage of system synthesis. These trans-

formations are carried out by some compilers or design experts. Even for the former

case, if such optimizations are carried out by untrusted compilers, they can result in

software bugs. Validation of a compiler ensuring correct by construction property is a

very difficult task. Instead, using behavioural verification techniques, it is possible to

verify whether the optimized output of each run of the compiler faithfully represents

the functionality captured in the input source code.

For behavioural verification, it is necessary to represent a program into a formal

computational model. A comprehensive list of models proposed to represent pro-

grams for various application areas and the analysis mechanisms around these models

can be found in [7, 8, 45, 99]. Petri nets have long been popular for modeling con-

current behaviours [23, 105, 126, 137]. The untimed PRES+ model (Petri net based

Representation for Embedded Systems), reported in [37, 38], enhances the classical

Petri net model to capture natural concurrency present in programs; they have well

1

2 Chapter 1 Introduction

defined semantics of computations over integers, reals and general data structures. In

essence, the enhancement of Petri net models to PRES+ involves permitting the places

to hold tokens with data values and the transitions to have associated data transforma-

tions and conditions of executions. Analyses of dependencies among the operations in

a program lie at the core of many optimizing transformations. Being value based with

an inherent scope of capturing parallelism, the PRES+ models depict such data depen-

dencies more directly; accordingly, they are likely to be more convenient intermediate

representations (IRs) of both source and transformed codes for translation validation

than strictly sequential variable-based IRs like all types of control data-flow graphs,

communicating sequential processes [65], etc. Accordingly, in the present work this

modelling paradigm has been chosen.

Behavioural verification involves demonstrating the output equivalence of all com-

putations represented by the original behavioural description with those of the trans-

formed behavioural description on identical inputs. From the success of path based

equivalence checking of CDFG models, designated as Finite State Machine with data

paths (FSMD) [20, 74], it is perceived that a similar approach is worth pursuing for

PRES+ models. Path structures in PRES+ models, however, are far more complex

than those in CDFG models due to the presence of parallel threads of computations in

the former. The present thesis identifies certain issues arising out of the complexity of

path structures in PRES+ models and presents some mechanisms to address them in

course of devising two path based equivalence checkers for PRES+ models.

1.1 Literature Survey

Behavioural transformation techniques are used extensively on the source program

in the code optimization phase of any optimizing and parallelizing compiler to obtain

optimal performance in terms of execution time, energy, etc. In this section, we briefly

describe several such behavioural transformations that are commonly applied by the

compilers and the different verification approaches adopted for their validation.

1.1 Literature Survey 3

1.1.1 Code motion transformations

Code motion is an optimization technique to improve the effectiveness of a program by

avoiding unnecessary re-computations [81]. The other objective is the minimization

of lifetimes of the temporary variables to avoid unnecessary resource allocation. This

can be achieved moving the operations beyond the basic block boundaries. The code

motion based transformation techniques can be classified into the following categories

as reported in [117]. (1) Duplicating down — In this code motion technique, the

operations are moved from a basic-block (BB) preceding a conditional block (CB) to

both the BBs following the CB. Reverse speculation [57] and lazy execution [117]

in this category. (2) Duplicating up — It involves moving operations from a BB in

which conditional branches merge to its preceding BBs in the conditional branches.

Conditional speculation [57] and branch balancing [54] fall in this category. (3)

Boosting up — In this code motion technique, operations move from a BB within a

conditional branch to the BB preceding the CB from which the conditional branch

sprouts. Code motion techniques such as speculation [57] lie in this category. (4)

Boosting down — In this code motion technique, operations move from BBs within

some conditional branches to a BB following the merging of the conditional branches

[117]. (5) Useful move — It refers to moving an operation to a control and data

equivalent block. When an operation moves from a BB preceding a CB to only one

of the conditional branches, or vice-versa, then such type of code motion is called

non-uniform code motion. On the other hand, a code motion is said to be uniform

when an operation moves from both the conditional branches to a BB before or after

the CB or vice-versa. Therefore, duplicating up and boosting down are uniform code

motions type whereas duplicating down and boosting up can be of uniform as well as

non-uniform code motion type.

1.1.2 Loop transformations

The loop transformation techniques are used to increase instruction level parallelism,

improve data locality and reduce overheads associated with executing loops of both

scalar and array-intensive applications [10]. The execution of any scientific program

is mostly spent on loops. Thus, a lot of compiler analyses and compiler optimiza-

tion techniques have been developed to make the execution of loops faster. Loop

4 Chapter 1 Introduction

fission/distribution/splitting for scalar programs attempt to break a loop into multi-

ple loops each comprising statement of codes which are independent of each other.

The inverse transformation of loop fission is loop fusion/jamming. Loop unrolling

reproduces the body of a loop by some number of times called unrolling factor. Un-

rolling improves performance by reducing the number of times the loop condition is

tested and by increasing instruction level parallelism. Loop interchange/permutation

exchanges two loops. Such a transformation can improve the locality of reference.

Loop unswitching moves a conditional from inside a loop to outside by duplicating

the loop body. Some other important loop transformations are loop reversal, spread-

ing, peeling, etc. [10].

1.1.3 Parallelizing transformations

Several applications like multimedia, image processing, signal processing and bio-

informatics must achieve a high computational power with minimal energy consump-

tion. Given these constraints, multiprocessor implementations not only deliver the

necessary power of computation, but also provide the efficiency of power. However,

the performance gain achieved is dependent on how well the compiler can parallelize

the given program and generate code for the same so that it can be mapped to the ar-

chitecture [2, 24]. There are three types of parallelism of the sequential programs: (i)

Loop-level parallelism: The iterations of a loop are distributed over multiple proces-

sors. (ii) Data-parallelism: data parallelism is achieved when each processor performs

the same task on different pieces of distributed data. (iii) Task-level parallelism: Task

parallelism focuses on distributing sub-tasks of a program across different parallel

processors. The sub-tasks can originate from different subroutine, independent loops,

or even independent basic blocks. This is the most used parallelizing technique.

A parallel behaviour is obtained from a sequential behaviour using a parallelizing

code transformation. Parallel transformations manipulate the concurrency level of

the parallel programs [63]. The concurrency level of a program may not match the

parallelism of the hardware. The transformations like loop merging and splitting,

process merging and splitting and computation migration, etc., are commonly used

for this purpose.

1.1 Literature Survey 5

1.1.4 Techniques for verification of behavioural transformations

Application of code motion techniques during the pre-processing phase of embed-

ded system design increases verification challenges significantly. Some verification

techniques have been reported in [96, 111] for transformations where a code never

moves beyond the basic block boundary. Some recent works [128], [78], [84] target

verification of such code motions. For example, a path recomposition based FSMD

equivalence checking method has been proposed in [78] to verify speculative code

motions. In [84], code motions are verified using a translation validation approach.

The equivalence checking method for scheduling verification reported in [74] works

well even when the control structure of the input behaviour is modified by the sched-

uler. The method can also verify uniform code motion techniques (whereupon code

preceding a conditional block are moved to both the branches emanating from the

block).

A bisimulation-based translation validation approach capable of verifying struc-

ture preserving and reordering loop transformations has been introduced by Pnueli et

al. [109, 110]. This method were demonstrated by Necula in [106] and Rinard et

al. [118]. This method is further enhanced by Kundu et al. [84] to verify the high-

level synthesis tool SPARK capturing parallel execution of statements. A bisimulation

method for concurrent programs is reported in Milner et al. [99]. The basic idea of

bisimulation method is that the number of iterations of some corresponding loops in

the source and the target programs must be the same but their order may be different.

So, there must be a one-to-one correspondence between the iterations of the source and

the transformed programs made available to the validation method. Based on that, a

set of permutation rules [25], which establish that the transformed code satisfies all

the implied data dependencies necessary for the validity of certain transformations, is

presented. The theorem prover CVC or Z3 [5, 125] is used to check the permutation

rules. The method relies on inputs from the optimizing compiler indicating the trans-

formation rules that have been applied to decide which inference rules to apply. Some

recent works [22], [67] following this approach focus on defining permutation rules

for other transformations. These methods apparently fail when two loop bodies have

been merged into one, or a single loop is split into two, such as, loop peeling, loop

merging or loop spreading. In case of loop unrolling, the numbers of iterations of the

loop in the source and the transformed programs are different. Using separation logic,

6 Chapter 1 Introduction

C11 compiler is verified reported in [131]. Mateev et al. [98] proposed a technique

called fractal symbolic analysis for verification of loop transformations. Their idea is

to reduce the difference between two programs by repeatedly applying simplification

rules until two programs become close enough to allow a proof by symbolic analysis.

All the above mentioned works use sequential model of computation (MoC) like

CDFG models for translation validation. Not many works have been reported on

transformation validation using PRES+ models. Cortes et al.[38] have introduced the

notion of functional and time equivalence of PRES+ models. According to this work,

two PRES+ models are defined to be functionally and time equivalent if and only

if after their execution on the same inputs, the token values and the token times at

the output ports are the same. Being simulation based, it is not a formal verification

method.

1.1.5 Objective of the work

Unlike variable based models, PRES+ models are value based; instead of storing the

values of a variable obtained at various points of a computation in the specific location

designated for the variable, each newly computed value is held in a place; if such a

value (of the variable) is used k times before a new value is computed, then k such

places are used to hold these values. This aspect along with the underlying structure

of a Petri net enables a PRES+ model to capture the inherent scope of parallelism

among data independent operations of a given program more vividly through its struc-

ture. Analysis of data dependence lies at the heart of most of the code optimizing and

parallelizing transformations. Hence it is felt that if both source program and its trans-

formed version are represented using PRES+ models, then they are likely to become

structurally similar making the task of equivalence checking easier. Accordingly, the

objective of this work is set to devise path based equivalence checking methods for

PRES+ models for validating several optimizing and parallelizing transformations. In

course of pursuing the work we have identified two ways to achieve this objective.

In the first one, the path boundaries are so ascertained that any computation can be

syntactically decomposed as a concatenation of parallel paths of the model. In the

second method, in keeping with the convention used for analyzing sequential CDFGs,

the path boundaries are ascertained so that each single iteration of any loop is captured

by a path.

1.2 Contributions of the thesis 7

1.2 Contributions of the thesis

The primary aim of this dissertation work is to devise path based equivalence check-

ing strategies for two PRES+ models, one representing a source code and the other

representing its transformed version, obtained by application of some optimizing and

parallelizing transformations on the source code. Any path based (symbolic) program

analysis method consists in introducing cut-points in the loops so that each loop is cut

in at least one cut-point; this step permits us to visualize any computation of a program

as a sequence of finite paths. Once computations are posed in terms of paths in the

above manner, a path based equivalence strategy consists in finding equivalent paths in

the models. Unlike sequential CDFG models like FSMDs, for PRES+ models, such

a sequence is expected to have parallel paths. It is, however, found that apparently

cutting only the loops is not adequate to capture a computation as a sequence of par-

allel paths. The dissertation first describes a method of introducing cut-points so that

a computation can be posed as a sequence of parallel paths. This method is referred to

as dynamic cut-point induced path based equivalence checking � “dynamic” because

additional cut-points, over and above those introduced to cut the loops, are needed for

the purpose and the method entails a symbolic execution of the model keeping track

of the tokens and disregarding the symbolic values, hence referred to as token track-

ing execution. We then reveal that it is possible to have a valid path based equivalence

checking strategy even when the conventional approach of introducing cut-points only

to cut the loops is followed. This second method is referred to as static cut-point in-

duced path based equivalence checking. In the following subsections, we describe the

formal vocabulary developed by us for devising the two equivalence checking meth-

ods and then present the respective contributions of the work in these two directions.

1.2.1 Dynamic Cut-point Induced Path Based Equivalence Check-

ing Method

The basic steps of a path based equivalence checking procedure are as follows: (1) In

the first step, a PRES+ model is partitioned into several fragments which are called

paths; the paths are obtained by cutting a loop in at least one cut-point which is

adopted from [50]; any computation of the model can now be represented as a concate-

8 Chapter 1 Introduction

nation of these paths. (2) It is then checked whether for all paths in the PRES+ model

N0 corresponding to the source program, there exists a path in the PRES+ model N1

corresponding to the transformed program such that the two paths are equivalent, i.e.,

their data computations and conditions of execution are identical and their input and

output places have correspondence. (3) Steps 1 and 2 are then repeated with N0 and N1

interchanged. The major challenges of the task of establishing equivalence between

two PRES+ models are as follows:

1. Devising a path construction procedure for a PRES+ model

2. Devising an equivalence checking method for PRES+ models.

Formally, a path in a PRES+ model is a sequence of sets of parallelisable transi-

tions having all the pre-places of the first set and the post-places of the last set as cut-

points and having no other intermediate sets of transitions with their post-places as

cut-points. It has been identified that in order to capture a computation by a sequence

of parallelisable paths, we need additional cut-points over and above those which only

cut the loops. Accordingly, the path construction mechanism consists in first intro-

ducing static cut-points at the entry points of the loops. Then additional cut-points

are introduced; this step involves a token tracking execution of the model. In course

of such an execution, whenever a set of token holding places are reached containing

at least one cut-point, all the other places in the set are also marked as dynamic cut-

points. We have devised an algorithm, implemented it in C, experimented with some

hand fabricated examples and examples taken from [56]. We provide formal proofs of

the following facts: (i) The set of paths obtained using the set of static and dynamic

cut-points covering all transitions is unique, (ii) Any computation of the model can

be viewed as a sequence of sets of parallelisable paths taken from the set, (iii) static

and dynamic cut-point induced path based equivalence checking mechanism is valid,

and (iv) the path construction is sound and complete. The complexity analysis of the

algorithm has also been carried out. This work has been accepted for publication in

[17].

The equivalence checking method consists in identifying for any path α in the

PRES+ model N0 of the source program, an equivalent path β in the model N1 of

the transformed version of N0 with identical data transformations and condition of

execution and the sets of pre-places of α and β having correspondence with each

1.2 Contributions of the thesis 9

other. The correspondence among the sets of pre-places of the paths of the two models

is defined in course of identifying the equivalent paths starting with the sets of input

ports and those of the output ports having correspondence with each other, respectively

given by the bijections fin and fout . Because of code motion transformations used to

obtain the transformed programs, a need arises for extending paths. The correctness

of the algorithm has been treated by showing its termination and soundness; it may

be noted that the problem of equivalence checking being not even semi-decidable

[65], the algorithm providing a partial procedure cannot be complete. A complexity

analysis has been carried out. This work has been published in [16, 17].

1.2.2 Static Cut-point Induced Path Based Equivalence Checking

In this part of the work, we identified that even with static cut-points cutting the loops

at the at their respective entry points, we can obtain a set of paths which captures a

computation; more precisely, such a set has the property that any model computation

µ can be represented as a sequence of paths which is computationally equivalent to µ

although, unlike the case of dynamic cut-point induced paths, such a sequence does

not maintain a syntactic identity with µ; this follows from the serializability of paral-

lelisable transitions and parallelisability and commutativity of independent transitions.

This necessitated a change in the definition of a path as a sequence of parallelisable

transitions having at least one cut-point among the pre-places of the first set and one

among the post-places of the last set with no cut-points in the post-places of any inter-

mediate sets. The definition of equivalence of paths and the correspondence relation

over the sets of places of the two models remain the same. The fact that static cut-point

induced path based equivalence checking strategy is a valid one has been proved. The

equivalence checking algorithm did not need any path extension because the paths

in this case have wider expanses encompassing the moved code in the cases of code

motion transformations even across loops. The algorithm has been proved correct by

showing its termination and soundness. This work has been reported in [18, 19].

Both the equivalence checking procedures have been implemented in C. We have

carried out experimentation along two courses. The first one has used hand con-

structed models and the second course of experimentation has been carried out us-

ing an automated model constructor which has been completed subsequently (and

described in [122]). The automated model constructor ensures that the constructed

10 Chapter 1 Introduction

models always preserve the one-safe property. Likewise, our hand constructed mod-

els also ensure that the model is one-safe; we have satisfactorily tested both the meth-

ods on several sequential [14] and parallel examples [14]. Translation is carried out

by one HLS (high level synthesis) compiler, i.e., SPARK [56] and two thread level

parallel compilers PLuTo [24] and Par4All[2]. All the examples involved source to

source translation of C programs by the compilers. For checking equivalence be-

tween two paths, a normalizer [20, 121] has been used. For sequential examples, we

have compared the two methods described in this work with the path extension based

FSMD equivalence checking [74] and the value propagation based FSMD equivalence

checking [20]. The performance of the dynamic cut-point (DCP) induced path based

equivalence checking method are found to be lower than, but within comparable limits

of, those of the FSMD based equivalence checking methods. The DCP method around

the PRES+ model and the path extension based equivalence checker go through path

extension which is costly. The static cut-point (SCP) induced path based equivalence

checking method of PRES+ models is also found to be comparable with FSMD based

equivalence checking method of [20] as well as DCP induced path based equivalence

checking method. Data independent loop interchanging transformations, which can-

not be effectively handled by any other technique at present, can be handled by our

method. This benefit accrues from a PRES+ model based method because the data

flow is captured more directly in the model using as many places as the number of

times a definition is used. In SCP induced path based equivalence checking method,

the costly path extension step is not needed. For the parallel examples, we have only

compared the two equivalence checking methods described in this work; the FSMD

based method of [20] does not handle parallel programs. The SCP induced path based

equivalence checking method is found to be comparable with the DCP induced method

for such programs too. During experimentation with parallel examples, our equiva-

lence checker has identified a bug of the PLuTo compiler (possibly due to faulty usage

of a variable name in the source program).

1.2.3 Thesis Organization

Chapter 1 provides a background, motivations, objectives, contributions and organi-

zation of the thesis.

Chapter 2 provides a detailed literature survey on different code motions, loop trans-

1.2 Contributions of the thesis 11

formations and parallelizing transformations and their validations approaches.

Chapter 3 presents the PRES+ model description and its computational semantics

formally.

Chapter 4 describes the path construction algorithm using dynamic cut-points where

a computation can be represented as a concatenation of parallel paths.

Chapter 5 describes the equivalence checking method between two PRES+ models

using dynamic cut-points.

Chapter 6 describes an efficient path construction algorithm using static cut-points

and also the corresponding equivalence checking mechanism.

Chapter 7 concludes by summarizing the contributions made through this work and

discusses some potential future research directions.

Chapter 2

Literature Survey

This chapter presents an overview of some important research contributions on var-

ious verification techniques for Petri net based models and secondly, in the area of

behavioural equivalence checking based validation of code optimization and paral-

lelizing transformations carried out by compilers. For each transformation, we first

underline its role in optimization and parallelization of the code and then present a sur-

vey of the existing verification methodologies identifying certain limitations of these

methodologies which have been addressed in this thesis.

2.1 Verification techniques for Petri net based models

In the present section, we focus on the literature on formal verification of some com-

plex systems, like embedded systems, modelled as Petri nets. Many models have been

proposed to represent embedded systems [45, 111] encompassing a broad range of

styles and characteristics depending upon application domains of the systems; they

include extensions of finite state machines, data flow graphs, communication pro-

cesses and Petri nets. In [39, 116], one-safe Petri net based MoCs coded in the lan-

guage PROMELA is used for designing embedded systems. The PRES+ model is first

proposed in [37, 38] where a translation technique from PRES+ models to timed au-

tomata (TA) is presented; the TA (without data variables) so obtained is then used to

verify some safety properties of several embedded software using the UPPAAL verifi-

cation tool [4]. Literature [94] reports a similar technique where time Petri nets (TPN)

13

14 Chapter 2 Literature Survey

are translated to TA in UPPAAL’s input format to verify several safety, reachability

and liveness properties using the tool. Some compositional verification techniques

for Petri net based models are reported in [46, 80]. A SAT-based bounded model

checking for concurrent and asynchronous systems for the safe Petri nets is reported

in [113]. Petri net models have been used in verification of distributed algorithms in

[29]. Literature [36] reports a verification technique of embedded systems where the

program translates from Synchronous and Interpreted Petri net (SIP-net) models to

optimized PROMELA code for verification through the SPIN model checker [123].

Verification of multi-agent system behaviour modelled using Petri net is also reported

in [28]. Several verification approaches regarding colour Petri nets model are reported

in [70, 132]. Safety property verification using Petri net based modelling paradigm

is reported in [103]. While all the above works dwell upon property verification,

literature [38] provides a notion of equivalence of simulation runs for specific data

inputs; no literature is available on model equivalence for symbolic simulation which

is needed for formal equivalence checking.

2.2 Code motion transformations

2.2.1 Applications of code motion transformations

Various code motion techniques are applied by the optimizing compilers on programs,

in general, and also during the scheduling phase in high-level synthesis and other pre-

processing phases of embedded system design. Parallelizing compilers too often use

code motion techniques [48, 53, 68, 81, 88, 101, 107, 120]. In the following, we study

the applications of several code motion techniques during code optimization.

The works reported in the literature [42, 43] describe in generalized code motions

applied during the scheduling phase in the synthesis systems, whereby the operations

move globally over the input source code. These works basically identify the solution

space and associate some cost with each possible solution; eventually, the solution

with the least cost is adopted. For reducing the search time, the methods of [42, 43]

propose a pruning technique which intelligently selects the least cost solution from a

set of candidate solutions.

2.2 Code motion transformations 15

Speculative execution is a technique which allows a super-scalar processor to keep

its functional units as busy as possible by executing the instructions before they are

required; thus, some computations are carried out even before the execution of the

conditional operations which decide whether the computation is actually needed. The

work reported in [87] describes several techniques to integrate speculative execution

into the scheduling phase of high-level synthesis. This work shows that the paths

for speculation is needed and accordingly, it decides the criticality of individual op-

erations and the availability of resources in order to obtain maximum benefits. It has

been denoted to be a promising technique for eliminating performance bottlenecks im-

posed by control flows of programs which gives a significant gain (up to seven-fold)

in terms of the execution speed. Their method has been integrated into the Wavesched

tool [86].

A global scheduling technique for super-scalar and VLIW processors is reported

in [100]. This technique parallelizes sequential code by removing anti-dependence

(i.e., write-after-read dependence) and output dependence (i.e., write-after-write de-

pendence) in the data flow graph of a program by renaming registers, as and when

required. The code motions are applied globally to maintain a data flow attribute

indicating at the beginning of each basic block the operations that are available for

moving up through this basic block. A similar objective is accomplished in [35]; this

work combines the speculative code motion techniques and parallelizing techniques

for betterment of control flow scheduling intensive behaviours.

In [71], during the register allocation phase, the code motion methods are merged

to obtain a better scheduling of instructions with minimum number of registers. Reg-

ister allocation can artificially constrain instruction scheduling, while the instruction

scheduler can force a weak register allocation. The method reported in this work tries

to overcome this limitation by combining these two phases of high-level synthesis.

In [35], a control and data dependence graph (CDFG) is used as an intermediate

representation which provides the possibility of extracting the maximum parallelism

from the behaviour. This work combines the speculative code motion techniques and

parallelizing techniques to improve scheduling of control flow intensive behaviours.

Similar techniques have been applied in [21] during analyzing a program to identify

the live range overlaps for all possible placements of instructions in the basic blocks

and all orderings of instructions within the blocks; based on this information, the

16 Chapter 2 Literature Survey

authors formulate an optimization problem which determine code motions and the

partial local schedules that minimize the overall cost of the live range overlaps. The

solutions to the formulated problem are evaluated using integer linear programming.

A method for elimination of concurrent copies using code motions on data dependence

graphs to optimize register allocation can be found in [26].

The efficacy of traditional compiler techniques employed in high-level synthesis of

synchronous circuits is studied for asynchronous circuit synthesis in [136]. It has been

shown that the several transformations like speculations, loop invariant code motions

and condition expansion, are applicable in decreasing the mass of handshaking circuits

and intermediate modules.

Several benefits of applying code motions to improve results of high-level synthe-

sis have also been reported in [55, 57, 58], where a set of speculative code motion

transformations that enable movement of operations through, beyond, and into con-

ditionals to maximize performance. The authors also introduced some sophisticated

transformations such as speculation, reverse speculation, early condition execution,

conditional speculation techniques in [57, 60, 61].

Literature [54, 55] present two novel strategies which increase the scope for appli-

cation of speculative code motions: (i) Dynamically adding scheduling steps to sched-

ule the conditional branches with fewer scheduling steps; this increases the opportuni-

ties to apply code motions, such as conditional speculation, that duplicate operations

into the branches of a conditional block. (ii) Determining if an operation can be condi-

tionally speculated into multiple basic blocks either using some existing idle resources

or by creating new scheduling steps; this strategy leads to balancing of the number of

steps in the conditional branches without increasing the longest path through the con-

ditional block. Classical common sub-expression elimination (CSE) technique fails

to eliminate several common sub-expressions in control-intensive designs due to the

presence of a complex mix of control and data flow. Aggressive speculative code mo-

tions are used to schedule control intensive designs which often re-order, speculate

and duplicate operations, changing thereby the control flow between the operations

with common sub-expressions. This gives some new opportunities for applying CSE

dynamically. This scenario is utilized in [59] to devise a new approach called dynamic

common sub-expression elimination. The code motion techniques and heuristics de-

scribed in this paragraph have been implemented in the high-level-synthesis compiler,

2.2 Code motion transformations 17

namely, SPARK [56].

Energy management is an important concern to both hardware and software de-

signers. An energy-aware code motion framework for a compiler is reported in [135]

which tries to cluster accesses to input and output buffers, thereby expanding the time

period during which the input and output buffers are clocked or power gated. The

method [92] attempts to change the data access patterns in the memory blocks by in-

troducing code motions in order to improve the energy efficiency and performance of

STT-RAM which is basically a hybrid cache. Some insights into how code motion

transformations may aid in the design of embedded reconfigurable computing archi-

tectures can be found in [41].

2.2.2 Verification of code motion transformations

Recently, a proof construction [104] mechanism has been proposed to verify some

transformations performed by the LLVM compiler [1]; these proofs are then checked

for validity using the theorem provers such as Z3 [5] and PVS [3]. Formal verification

of single assignment form based optimizations for the LLVM compiler has been re-

ported in [138]. Now, we shall focus on the verification strategies targeting validation

of several code motions as mentioned in Section 2.2.1.

A formal verification of the scheduling phase of high level synthesis using the

FSMD model is reported in [77]. In this paper, path covers for the two FSMD models

are constructed introducing cut-points in the models. Then, for each path in the path

cover of one FSMD, the method searches for an equivalent path in the other FSMD.

The major requirement of this work is that the control structure of the input FSMD is

not disturbed by the scheduling algorithm and no code can be moved beyond the basic

block boundaries. This implies that the respective path covers obtained from the cut-

points are essentially bijective. The limitation of this method is that such a bijective

correspondence does not necessarily hold because the scheduler may merge some

paths of the original specification into one path of the implementation or distribute

operations of a path over several paths for optimization of time steps.

A Petri net based verification method for checking the correctness of algorithmic

transformations and scheduling process in high-level synthesis is proposed in [31].

18 Chapter 2 Literature Survey

The initial behaviour is converted first into a Petri net model which is expressed by a

Petri net characteristic matrix. Based on the input behaviours, they extract the initial

firing pattern. If there exists at least one candidate who can allow the firing sequence

to execute legally, then the high-level synthesis result is claimed as a correct solution.

All these validation approaches, however, are well suited for basic block based

scheduling [69, 91], where the operations cannot move beyond the the basic block

boundaries. and the path-structure of the input behaviour does not change due to

scheduling. These techniques are not applicable to the verification of code motion

techniques if the code is moved beyond the basic block boundaries.

Some recent work [74, 78, 84] target verification of several code motion tech-

niques. Specifically, a path recomposition based FSMD equivalence checking has

been reported in [78] which can verify only the speculative code motions. The condi-

tions for correctness are formulated in higher-order logic and verified using the PVS

theorem prover [3]. Recomposition of paths over conditional blocks fails if the non-

uniform code motion transformations are applied by the scheduler. A translation

validation approach for high-level synthesis is reported [84, 85] where bisimulation

relation based approach is used to prove equivalence. This method automatically es-

tablishes a bisimulation relation that states which points in the initial behaviour are

related to which points in the scheduled behaviour. This method is incapable of find-

ing the bisimulation relation if a code segment preceding a conditional block is not

moved to all the branches of that block. The major limitation of this work is that it

can fail if the control structure of the initial program is transformed by the path-based

scheduler [27]. A path based equivalence checking method has been reported in [75]

for uniform code motion validation using FSMD models. The method has been fur-

ther enhanced in [74] to handle non-uniform code motions as well. The work reported

in [89] has identified some false negative cases reported by the algorithm in [75] and

proposed an algorithm to overcome these limitations. The path based mechanism of

[74] has been modified using a notion of value propagation [20] to widen the scope of

the former to cover code motion across loops.

The above verification techniques for translation validation for optimizing com-

pilers fall under two categories namely, path based equivalence checking method, and

bisimulation based method. Path based equivalence checking was first proposed by

Karfa et. al. [75], whereby the source and the transformed programs are represented

2.2 Code motion transformations 19

as FSMD models which are then segmented into paths; the method consists in showing

that for every path in the original FSMD, there exists an equivalent path in the other

FSMD, and vice-versa; on successful identification of all pairs of equivalent paths,

the two FSMD models are asserted to be equivalent. This method can handle signifi-

cant modifications of the control structures introduced by path based schedulers [27]

as well as dynamic loop scheduling (DLS) [112]. This method is further enhanced

in [20, 74] to increase the power of the FSMD equivalence checker for handling di-

verse code motion transformations.

In the bisimulation based method, transition systems are used to model hardware

and software at various abstraction levels. In the lower abstraction level, more im-

plementation details are present thereby permitting less number of computations than

the specification. It is, therefore, tried to verify that all the computations of the re-

finement of a given specification are by some computation permitted by the specifica-

tion. Thus, the aim of bisimulation equivalence is to identify transition systems with

the same branching structure so that they can simulate each other step by step [13].

Bisimulation equivalence establishes the possibility of mutual, step-wise simulation.

Bisimulation equivalence is first proposed by Milner et. al. [99] as a binary relation

between two communicating systems over the same set of atomic propositions.

Bisimulation method is then modified for labeled transition system which is re-

ported in [47]. This method is also applicable for timed systems [127], well-structured

graphs [44], probabilistic processes [11, 12], etc. Scalability issues of bisimulation

based approaches are reported in [32, 49, 133].

Translation validation for an optimizing compiler by obtaining simulation rela-

tions between programs and their translated versions was first proposed in [110]; such

a method is demonstrated by Necula et. al. [106] and Rinder et. al. [118]. The

procedure mainly consists of two algorithms – an inference algorithm and a check-

ing algorithm. The inference algorithm collects a set of constraints (representing the

simulation relation) using a forward scanning of the two programs and then the check-

ing algorithm checks the validity of these constraints. Depending on this procedure,

validation of high-level synthesis procedures are reported in [84, 85]. Unlike the

method of [106], their procedure considers statement-level parallelism since hardware

can capture natural concurrency and high-level synthesis tools exploit the paralleliza-

tion of independent operations. Furthermore, the method of [84, 85] uses a general

20 Chapter 2 Literature Survey

theorem prover, rather than the specific solvers (as used by [106]). On a comparative

basis, a path based method always terminates; however, some sophisticated transfor-

mations, like loop shifting, remains beyond the scope of the state of the art path-based

methods. The loop shifting [40] can be verified by the method reported in [84, 85]. A

major limitation the reported bisimulation based method is that the termination is not

guaranteed [84, 85, 106]. Also, it cannot handle non-structure preserving transfor-

mations by path based schedulers [27, 112]; in other words, the control structures of

the source and the target programs must be identical. The authors of [93] have studied

and identified what kind of modifications the control structures undergo on application

of some path based schedulers; based on this knowledge, they try to establish which

control points in the source and the target programs are to be correlated prior to gen-

erating the simulation relations. The ability to handle control structure modifications

which are applied by [112], however, still remain beyond the scope of the currently

known bisimulation based techniques.

A Petri net based verification strategy is described in [15] for sequential high-

level synthesis benchmarks for several code motions. In this method, the Petri net

representations of an original behaviour and its transformed version are translated into

equivalent FSMD models and fed as inputs to the FSMD equivalence checker of [74];

no correctness proof, however, is given for this method; moreover, in the presence

of more than one parallel thread, the method fails to construct the equivalent FSMD

models.

None of the above mentioned techniques has been demonstrated to handle effi-

ciently code motions across loops as well as code motions for parallel programs [82].

All the methods work only for the sequential MoCs. Hence, it would be desirable to

have an equivalence checking method that encompasses parallelism and has the ability

to verify efficiently code motions across loops along with uniform and non-uniform

code motions transformations where the control structure of the program is altered.

2.3 Several parallelizing transformations

Parallelizing code transformation techniques partition the sequential code into con-

current tasks. Many techniques are reported in [51, 64, 134]. In all of these reported

2.3 Several parallelizing transformations 21

methods, the data parallelism as well as thread level parallelism are mentioned. In

[24, 51, 82] some methods have been presented to parallelize a number of divide and

conquer algorithms using communication channels.

A tool, called SPRINT, is reported in [34] where a sequential code is automatically

transformed to a concurrent SystemC model. While most of the reported techniques

exploit data parallelism, SPRINT exploits the functional parallelism in the behaviour

to yield parallel tasks where each task implements a different subset of statements. In

contrast, the data parallelism consists in executing the same code in parallel on dif-

ferent subsets of data. In [52], an automated mechanism for enhancing the functional

parallelism from ordinary programs is presented. In this method, a hierarchical task

graph (HTG) is constructed from the initial sequential behaviour. The HTG provides

a powerful mechanism for representation of intermediate version which encapsulates

parallelism of different types and scope levels leading to generation and optimization

of parallel programs. Turjan et al. [129, 130] described an automatic transformation

mechanism of nested-loop programs to Kahn process networks (KPNs).

2.3.1 Verification of parallelizing transformations

In [124], an approach of symbolic model checking of process networks is introduced

for validating them using their binary decision diagram based models. In this litera-

ture, the authors also introduce a representation of multi-valued functions appearing

in the process network called interval decision diagrams (IDDs) which can be conven-

tionally used by the symbolic model checker.

Some non-semantic preserving parallelizing transformations of process networks

during refinement steps of embedded system design are proposed in [115]. These

transformations involve lower level implementation details. In this method, a set of

verification properties for every non-semantic-preserving transformation is defined as

CTL* formulae. The verification tasks are divided into two steps: (i) the local correct-

ness of the non-semantic-preserving transformation is checked by preserving proper-

ties using a model checking tool, and (ii) the global influence of the refinement to the

entire system is studied through static analysis. In [30], the designs at different ab-

straction levels are automatically translated into PROMELA description and verified

using SPIN model checker [66].

22 Chapter 2 Literature Survey

When a sequential behaviour is transformed into a parallel behaviour, it is re-

quired to ensure that (i) the transformed behaviour must satisfy data-flow properties

[62] of the systems and (ii) it is functionally equivalent to the initial behaviour [102].

For the first task, model checking is used as the initial verification approach. The

verification models are mechanically generated from both the input and transformed

behaviours and then the properties are checked using some model checker like, SPIN

[66], NuSMV [33], etc. For the second task, however, model checking cannot be used

as it is more appropriate for property verification but not for behavioural verification.

2.4 Conclusion

The literature survey carried out in this chapter clearly reveals that between property

verification and functional equivalence checking, the research emphasis is much more

in favour of the former compared to the latter. The task of validation of compiler

transformations necessitates that the original program and the transformed program

should be functionally equivalent. All the computational aspects of a program cannot

be captured as some liveliness and safety properties only; such properties capture only

certain aspects of a computation at a high abstraction level.

Dependences among the computation steps of a program lie at the heart of trans-

forming programs towards more efficient performance. PRES+ models built upon

Petri nets capture such dependences more vividly. As indicated in Section 1.1.5, this

aspect of the model apparently makes it a convenient paradigm for optimizing and

parallelizing transformation validation; in spite of this apparent potential, the survey

reveals that there has not been any transformation validation work using this modelling

framework. In the subsequent chapters of this dissertation, we shall study how such

mechanisms can be devised and whether they would indeed score favourably over the

methods reported around other model(s) of computation.

Chapter 3

PRES+ models and their
computations

For formal analysis of a program, it is necessary to represent the program using some

equivalent formal modelling paradigm. As the main target of this work is to validate

code optimizing and several parallelizing transformations, a parallel model of compu-

tation (MoC) is necessary. In this work, the PRES+ model, whose underlying structure

is a one-safe Petri net model with tokens being capable of holding values, is selected

as the parallel MoC. In this chapter, we first describe the PRES+ model and its compu-

tational semantics. We then describe the notion of computational equivalence between

two PRES+ models.

3.1 The PRES+ model

A PRES+ model [38] is an eight tuple N = hP;V; fpv;T; I;O; inP;outPi, where the

members are defined as follows. The set P = fp1; p2; : : : ; pmg is a finite non-empty set

of places. The set V is the set of variables of the program which N seeks to model. The

mapping fpv : P ! V [fδg depicts an association of the places of N to the program

variables V ; the role of the co-domain element δ for fpv is explained shortly. The

variable fpv(p) is denoted as vp in short; vp assumes values from a domain Dp. Thus,

depending upon the type of the variable vp, the token value at the place p may be

of type Boolean, integer, etc., or a user-defined type of any complexity (such as, a

23

24 Chapter 3 PRES+ models and their computations

structure or a set). In this dissertation, we consider only integer type variables. The

set T = ft1; t2; : : : ; tng is a finite non-empty set of transitions; the relation I � P�T

is a finite non-empty set of input edges which define the flow relation from places

to transitions; a place p is said to be an input place of a transition t if (p; t) 2 I.

The relation O� T �P is a finite non-empty set of output edges which define the flow

relation from transitions to places; a place p is said to be an output place of a transition

t if (t; p) 2 O. A place p 2 P is said to be an in-port if and only if (t; p) =2 O, for all

t 2 T . Likewise, a place p 2 P is said to be an out-port if and only if (p; t) =2 I, for

all t 2 T . The set inP� P is the non-empty set of in-ports and the set outP� P is the

non-empty set of out-ports. The pre-places �t of a transition t 2 T is the non-empty set

of input places of t. Thus, �t = fp 2 P j (p; t) 2 Ig. Similarly, the post-places t� of a

transition t 2 T is the non-empty set of output places of t. So, t�= fp2P j (t; p)2Og;

a place p1 is said to be a co-place of a place p2 if p1; p2 2 t� for any transition t. For any

set T of transitions, �T
�
=
S�

t2T t
�

represents all the pre-places of the transitions in T .

Similarly, for any set T of transitions, T �
�
=
S

t2T t�
�

represents all the post-places of

the transitions in T . The pre-transitions �p and the post-transitions p� of a place p 2 P

are given by �p = ft 2 T j (t; p) 2 Og and p� = ft 2 T j (p; t) 2 Ig, respectively; for

any set P of places, �P
�
=
S

p2P
�p
�

represents all the pre-transitions of the places in

P. Similarly, for any set P of places, P�
�
=
S

p2P p�
�

represents all the post-transitions

of the places in P. If the post-places t� of a transition t contains n places, then all these

places are associated with identical token type and token value and therefore, the

domain of all the post-places of a transition are identical; this property is consistent

with the firing rules of Petri net transitions.

A transition t is associated with a guard condition gt :Dp1 �Dp2 � : : :�Dpnt
!

f>;?g and a function ft :Dp1�Dp2� : : :�Dpnt
!D, where �t = fp1; p2; : : : ; pntg and

D = Dp01
= Dp02

= : : : = Dp0mt
such that t� = fp

0

1; p
0

2; : : : ; p
0

mt
g. The guard condition

gt specifies the condition that must hold over the token values in �t for the transition t

to be executed. The function ft captures the functional transformation that takes place

on the token values in �t to produce the same token value at all the places in t�. For

example, for an assignment statement of a high level language of the form x := y+

(c=d)�4, the transition t will have �t = fp1; p2; p3g, t�= fpg and ft will be maintained

as vp1 + (vp2=vp3) � 4, where vp1 is y, vp2 is c, vp3 is d and vp is x. A transition t

corresponding to an initialization operation of some variable(s) with a constant value

has the associated function ft as the corresponding constant function with a pre-place

3.2 Computations in a PRES+ model 25

associated with δ; some places are also introduced as synchronizing pre-places of

certain transitions to ensure that all the operations of an iteration is completed before

the next iteration starts; these synchronizing places are also associated with δ; all

places associated with δ are called dummy places. The model is deterministic denoted

symbolically by the following conditions:

(i) The PRES+ model is one-safe, i.e., at any point, a place may hold at most one

token [108].

(ii) For any place p, for any two transitions ti; t j 2 p�, if �ti\�t j 6= /0, then gti(fpv(
�ti))^

gt j(fpv(
�t j))�?(f alse), where fpv(

�t), for any transition t, indicates the image

of the set �t of places under fpv; likewise for fpv(t�).

Also the model is completely specified denoted symbolically by the following condi-

tion:
W

t2p� gt(fpv(
�t))�>(true).

It is to be noted that the transitions may also have delay and deadline time parame-

ters; models having these features are called timed PRES+ models. We deal with only

untimed PRES+ models. Henceforth, by a PRES+ model we only mean a one-safe,

untimed, deterministic, completely specified PRES+ model.

3.2 Computations in a PRES+ model

A marking M is an ordered 2-tuple of a subset of places PM of the PRES+ model

and a mapping valM of places to token values; hence, M = hPM;valMi, where PM � P,

referred to as place marking of M, designates the set of places where tokens are present

for the marking M; the values of these tokens are captured by the second member valM
which is a function defined as follows. Let DM = tp2PM Dp, the disjoint union of the

family of sets Dp; p 2 PM. The function valM : PM ! DM maps a place p 2 PM to

a value in the domain Dp of that place. The function valM is consistent with the

mapping fpv, that is, 8p1; p2 2 PM, if fpv(p1) = fpv(p2), then valM(p1) = valM(p2).

The symbol valM(P0) denotes the values of places in P0 � PM. A marking M0 is an

initial marking with PM0 = inP.

26 Chapter 3 PRES+ models and their computations

p1 p2 p3

t1 t2 t3

g ~g

ft3
ft2ft1

p4 p5
p6 p7

Figure 3.1: Places and transitions in a PRES+ model.

In a PRES+ model, a transition t 2 T is said to be bound for a given mark-

ing M : hPM;valMi if and only if all its input places are marked, i.e., �t � PM. A

bound transition t 2 T for a given marking M is said to be enabled if and only if

gt(fpv(
�t))fvalM(�t)= fpv(

�t)g � > where �t = fp1; : : : ; pntg and fvalM(�t)= fpv(
�t)g

indicates the substitution of the variables in fpv(
�t) by valM(�t). The set of enabled

transitions for a marking M is denoted as TM. For any t1; t2 2 TM, fpv(t�1)\ fpv(t�2) = /0

and fpv(
�t1)\ fpv(t�2) = /0 ensuring that there are no shared variables with write after

write and read after write dependences, respectively. For untimed PRES+ models, all

the enabled transitions are fired simultaneously provided they satisfy the above (free-

dom of) dependency requirements. After firing of all enabled transitions from a given

marking M, the successor marking M+ of M is obtained. The definition of successor

marking is as follow:

Definition 1 (Successor marking of a marking). A marking M+ = hPM+;valM+i is

said to be a successor of the marking M = hPM;valMi, if

(i) the first component PM+ referred to as, successor place marking of PM, contains

all the post-places of the enabled transitions of M and also all the places of

M whose post-transitions are not enabled; symbolically, PM+ = fp j p 2 t� and

t 2 TMg[fp j p 2 PM and p =2 �TMg, and

(ii) 8p2PM+ , if p= t� for some t 2TM, then valM+(p)= ft(valM(�t)) and if p =2 �TM,

then valM+(p) = valM(p).

Example 1. For illustration of the role of guard conditions of transitions in deter-

mining the enabled transitions as a subset of the bound transitions and the successor

marking of a marking, let us consider the situation depicted in Figure 3.1. Let M be

3.2 Computations in a PRES+ model 27

such that PM = fp1; p2; p3g; valM(p3) denotes the value of the token at p3. The set of

bound transitions are ft1; t2; t3g. Depending on the guard conditions associated with

the bound transitions t2 and t3, the set TM of enabled transitions will be either ft1; t2g

or ft1; t3g. If gt2(valM(p3)) is true, then the concurrent transition set ft1; t2g fires and

leads to the marking M+
1 where, PM+

1
= fp4; p5; p6g; otherwise, the set ft1; t3g fires

and leads to the marking M+
2 such that PM+

2
= fp4; p7g. �

For formalizing the definition of computation of a PRES+ model, we need the

following definitions.

Definition 2 (Back edge). An edge ht; pi from a transition t to a place p 2 t� is said

to be a back edge with respect to an arbitrary DFS traversal of the PRES+ model, if

p is an ancestor of t in that traversal.

In the sequel, all references to “back edge” involve the same traversal.

Definition 3 (Successor relation between two transitions). A transition ti succeeds a

transition t j, denoted as ti � t j, if 9tk1; tk2; : : : ; tkn 2 T; and p1; p2; : : : pn+1 2 P;n � 1

such that

(i) ht j; p1i;htk1 ; p2i; : : : ;htkn�1; pni;htkn; pn+1i 2 O� T �P,

(ii) hp1; tk1i;hp2; tk2i; : : : ;hpn; tkni;hpn+1; tii 2 I � P�T and

(iii) none of ht j; p1i or htkm; pm+1i;1� m� n, is a back edge.

The expression ti � t j is used as a shorthand for :(ti � t j).

Definition 4 (Set of parallelizable transitions). Two transitions ti and t j are said to

be parallelisable, denoted as ti � t j, if (i) ti � t j, t j � ti and (ii) 8tk; tl(tk 6= tl ^ ti �

tk ^ t j � tl ! �tk\ �tl = /0), where ti � tk holds if and only if ti succeeds tk or ti is

the same as tk. A set T = ft1; t2; : : : ; tkg of transitions is said to be parallelisable if

8ti; t j 2 T; ti 6= t j ! ti � t j holds.

To ensure that shared variables are read-only for all parallelisable transitions, we

need the following two properties: (i) fpv(t�i)\ fpv(t�j) = /0 and fpv(
�ti)\ fpv(t�j) = /0,

(ii) fpv(t�k)\ fpv(t�l) = /0 and fpv(
�tk)\ fpv(t�l) = /0.

28 Chapter 3 PRES+ models and their computations

Definition 5 (Parallelizable sets of parallelizable transitions). Let T1;T2; : : : ;Tk be k

sets of parallelisable transitions. They are said to be parallelisable if
Sk

i=1 Ti is a set

of parallelisable transitions.

Definition 6 (Set of maximally parallelizable transitions). A set T is said to be max-

imally parallelisable if there is no set T 0 of parallelisable transitions which contains

T .

Definition 7 (Succeed Relation over Parallelizable Transitions). Given two sets of

parallelisable transitions T1 and T2, T1 is said to succeed T2, denoted as T1 � T2, if

9t1 2 T1 and 9t2 2 T2 such that t1 � t2.

Since parallelisable transitions are all independent of each other, any maximally

parallelisable set T of transitions can be partitioned arbitrarily and the members of the

partition can be executed in any arbitrary order.

Definition 8 (Computation in a PRES+ model). In a PRES+ model N with in-port

inP, a computation µN;p of an out-port p is a sequence hT1;T2; : : : ;Ti; : : : ;Tli of sets of

maximally parallelisable transitions satisfying the following properties:

(i) There exists a sequence of markings of places hPM0;PM1; : : : ;PMl�1i such that

(a) PM0 � inP,

(b) 8i;1 � i < l, PMi is a successor place marking of PMi�1 , �Ti � PMi�1 and

T �
i � PMi .

(ii) p 2 T �
l .

We can represent the computation alternatively as a sequence of place markings

h�T1;T �
1 [

�T2;T �
2 [

�T3; : : : ;fpg � T �
l i; thus in this alternative representation, a com-

putation is a sequence of markings of places which starts with the pre-places of the

first set of transitions, ends with the unit set fpg � T �
l , the post-places of the last (unit

set of) transition and the remaining members in the sequence are the union of the

post-places of a set of transitions with the pre-places of its next set of transitions.

If there are k out-ports, then for each initial marking M0, there are at most k com-

putations, one for each out-port. (We drop the subscripts of µ when they are clear from

3.2 Computations in a PRES+ model 29

p1

p2

[vp
1
< 0]

[vp1
>=0]+1 +1

[vp2
<8]

+5+1

[vp2
>=8]

t1
t2

t3t4

3
p

Figure 3.2: Computation in a PRES+ model.

the context. Thus, more specifically, when there is no other PRES+ model we use the

symbol µp.)

For many valuations of inP (and consequently of �T1), the same sequence given

by µp can result. In general, therefore, a particular sequence µp may represent more

than one computation trace where a trace of a computation is formally denoted as an

ordered pair hµp;val(�T1)i.

We characterize the set of all traces of a given computation µp starting with the

transition set T1 using the characteristic predicate Rµp(fpv(
�T1)) of the set of all valua-

tions of �T1 for which µp results. Similarly, the data values of the variable vp associated

with p produced by all the computation traces represented by µp is characterized by

a symbolic arithmetic expression rµp(fpv(
�T1)). More specifically, therefore, we have

the following two entities characterizing a given computation µp:

1. The condition of execution is Rµp(fpv(
�T1)).

2. The data transformation is rµp(fpv(
�T1)).

The entities Rµp and rµp for µp can be obtained using the conventional backward sub-

stitution method [95], or alternatively by forward substitution method [79] (used ex-

tensively in program verification literature) along µp. Now, we illustrate computations

in a PRES+ model through the following example.

Example 2. Let us now examine how various sequences of sets of transitions of the

model, given in Figure 3.2, satisfying Definition 8 represent different computations.

30 Chapter 3 PRES+ models and their computations

Consider the sequence µ(1)p3 = hft1gi and the sequence of place markings hPM0 =

fp1gi; the latter satisfies clause 1(a) of Definition 8 because fp1g = inP; clause

1(b) is satisfied vacuously; clause 2 is satisfied because p3 2 ft1g�. The condition of

execution R
µ(1)p3

(fpv(fp1g)) is vp1 < 0 and the data transformation r
µ(1)p3

(fpv(fp1g)) =

vp1 + 1. The computation traces for all negative token values at p1 such as �7;�9,

etc., belong to µp3
(1) and obviously, R

µ(1)p3
(�7) � R

µ(1)p3
(�9) � >; r

µ(1)p3
(�7) = �6 and

r
µ(1)p3

(�9) =�8. Consider next the sequence µ(2)p3 = hft2g;ft3g;ft3g;ft4gi; for a choice

of sequence of place markings hPM0 = fp1g;PM1 = fp2g;PM2 = fp2g;PM3 = fp2gi,

clause 1(a) is satisfied because PM0 = fp1g= inP. Clause 1(b) is satisfied as follows;

for i = 1, successor place marking PM+
0
= fp1g

+ has two choices, one is fp3g and the

other is fp2g depending on the token value at p1; thus PM1 = fp2g in the chosen se-

quence is indeed a successor marking of PM0; so, �T1 =
�ft2g= fp1g= PM0 and T �

1 =

ft2g� = fp2g= PM1 . Similarly, for i = 2;3, it can be shown that clause 1(b) is satisfied

for the chosen sequence; clause 2 is satisfied because p3 2ft4g�. The condition R
µ(2)p3

is

computed as follows. The condition associated with the transition t4 is vp2 � 8. Start-

ing with the predicate > at fp3g, using the weakest pre-condition calculation, we get

R
µ(2)p3

(fpv(fp1g)) as vp1 +1+5+5� 8^vp1 +1+5 < 8^vp1 +1 < 8^vp1 � 0 which

simplifies to vp1 � 0^ vp1 � 1 and r
µ(2)p3

(fpv(fp1g)) = vp1 +1+5+5+1 = vp1 +12.

It is to be noted that µ(2)p3 is executed for token values 0 and 1 at p1 (for which Rµp2
is

>). Similarly, for the sequence µ(3)p3 = hft2g;ft3g;ft4gi, Definition 8 will be satisfied;

hence µ(3)p3 will represent a non-empty set of valid computation traces. Specifically,

R
µ(3)p3

(fpv(fp1g)) is vp1 � 2^vp1 � 6 and r
µ(3)p3

(fpv(fp1g)) = vp1 +1+5+1 = vp1 +7.

Thus, each of the sequences µ(1)p3 ;µ
(2)
p3 or µ(3)p3 represents more than one computation

trace. Now consider the sequence µ(4)p3 = hft1g;ft4gi. We argue that we cannot con-

struct any sequence of place markings satisfying the clauses of Definition 8. In or-

der to satisfy clause 1(a), the first member in the place marking sequence must be

PM0 � inP = fp1g. Hence, PM0 = fp1g. For satisfying clause 1(b), for i = 1, the

following properties of the constructed sequence must hold:

(i) PM1 must be the successor place marking of PM0 ,

(ii) �T1 � PM0 ,

(iii) T �
1 � PM1 .

Property (ii) is satisfied because �T1 =� ft1g = fp1g = PM0 . For property (iii), there

3.2 Computations in a PRES+ model 31

are two choices for PM+
0

; accordingly, we have the following two cases:

� Case 1: PM+
0
= fp2g— This does not satisfy property (iii) for i = 1 because

T �
1 = ft1g� = fp3g* PM+

0
= fp2g.

� Case 2: PM+
0
= fp3g— For i = 1, properties (i), (ii) and (iii) are satisfied; so

the sequence can be extended to hfp1g;fp3gi. Now for i= 2, the property (i)(b)

becomes �T2 =
�ft4g= fp2g* PM1 = fp3g. Hence property (i)(b) is violated.

So, no sequence of place markings can be computed for µ(4)p3 ; hence the latter is not a

computation. �

Now we describe the Petri net fragments corresponding to some important con-

structs of both sequential and parallel programs schema.

For each of these program constructs, a corresponding typical PRES+ subnet is

given in Figure 3.3. The subnet corresponding to a simple assignment statement of the

program is given in Figure 3.3(a) where the right hand side (rhs) function is associated

with the transition. The pre-place(s) of the transition represents the value(s) of the

used variable(s) and the post-place(s) represent the copies of the left hand side (lhs)

variable value defined through the assignment statement.

A sequence of assignment statements makes a normal basic block. In normal basic

block, the data dependency analysis is carried out over the sequence of assignment

statements and parallel threads are accordingly installed; a typical subnet structure

corresponding to such a basic block is given in Figure 3.3(b).

For the if-else construct, there is a bifurcation from a set of places corresponding to

the variable values over which the condition g, say, of the if-else block is defined; the

bifurcation leads to the pre-places of two different sets of transitions representing the

start of the if-then block and that of the else block; all the (parallelisable) transitions

in the first set are associated with the condition g and those in the second set are

associated with :g. A typical subnet corresponding to the if-else construct is given in

Figure 3.3(c). It may be noted that if the value of some variable v prior to the if-then-

else block is used in both then-block and else-block, as is the case for the variable v in

Figure 3.3(c), then bifurcation also takes place from the place holding this prior value

32 Chapter 3 PRES+ models and their computations

of v; specifically, for Figure 3.3(c), therefore, two model arcs hp2; t1i and hp2; t2i are

put.

pc[vpc
:"c"] pd[vpd

:"d"]

pe[vpe
:"e"]

pa[vpa
:"a"]

pb[vpb
:"b"]

pa[vpa
:"a"]

 [vp
2

:"b"]p
2

p1 p1
: "a"] [v

pb[vpb
:"b"]

(a)

pe

f1

f3

f2

[g(a)] [~g(a)](b)f1 2f

p3 [vp3
: "c"]

(b)

(c)

a

c=f1 (b)
2

 f

b=f(a);

(a), d=f

e=f 3

(b)

(c,d);

t1 t2

if g(a) then c=f1(b) else c=f2
(b)

t1

t2t1

t3

id1
(3) f3

t1

t2

t3

t4

[gw(a)] [~gw(a)]

p2 [vp2
:"b"]

p1[vp1
:"a"]

p3 [vp3
: "c"]

p3 [vp3
:"b"]

p4 [vp4
:"c"]

p6 [vp6
: "d"]

f1

f
2

(d)

while(g w(a)){c=f 1(b);a=f 2(c);}d=f 3(c);

p11[v :"b"] p22[v :"d"]

p33[v :"a"]

p8
[v :"c"]

p9
[v :"e"]p9

p10
[v :"a"]

p11
[v :"d"]

parbegin

 c=f 1(a,b);

 a=f 2(c,d);

||

 e=f3(d,b);

parend

 d=f4(a,e);

t1 t2

t3 t4

t5

t6

id id

f1

f2

f3

f4

p p

p

p4

p5

p6 p7

p8

p10

p11

(e)

Figure 3.3: PRES+ model snapshots for various high level language constructs.

3.2 Computations in a PRES+ model 33

For a while-loop construct, for the condition gw, say, again there will be a set of

pre-places corresponding to the loop control variable values over which the condition

gw is defined; From these loop control places, there will be bifurcations leading to

a set of transitions corresponding to the start of the while body and to another set

of transitions corresponding to the start of the block reached through the exit of the

while loop; all the transitions in the first set are associated with gw and those in the

second set are associated with :gw. Finally, the values of the loop control variables

updated in the loop body are returned to the corresponding loop control pre-places.

A typical subnet corresponding to a while-loop construct is given in Figure 3.3(d).

The body of the while-loop contains the sequence of transitions ht1; t2; t3i; the unit set

ft1g constitutes the start of the while-body and the unit set ft4g constitutes the start of

exit from the while-loop. Hence, these transitions are made to have the place p1 with

vp1 = a as their common pre-place and are associated with the guard condition gw(a)

and :gw(a), respectively. The variable a is modified in the loop body through the

transitions t3; hence the place p1 is made its post-place. The variable b is not modified

in the loop body but reused over the iterations; hence t1 has p2 with vp2 = b as one of

its post-places; the other post-place p3 provides the value of b for the transition t2; the

function ft1 associated with t1 is the identity function of arity 3. There are two issues

associated with such a variable v whose values are reused over iterations; the first one

is about synchronization with the start of every new iteration; for Figure 3.3(d), this

task is accomplished by the loop control place p1 itself because unless p1 acquires

new token at the end of an iteration, t1 does not fire. Without such a synchronization

mechanism in place, the one-safe property of the PRES+ model may get violated. The

second issue arises if the variable b is not live at the exit point of the loop. In such a

case the token put at p2 by the last iteration of the loop body may remain unutilized. To

ensure that such unutilized tokens are flushed out, the exit transition t4 has been made

to have place p2 as one of its pre-places. The variable c is used as well as redefined

in the loop body; it is also live at the exit point. Thus, the place p3 with vp3 = c is

kept as a pre-place of t1 and t4 and also as a post-place of t2. Although c is not live at

the entry point of the loop body (because it is defined anew at each iteration through

t2), the initial token has to be flushed out at the start of every iteration to preserve

one-safeness of the model; this is achieved by having p3 as a pre-place of t1 which

actually computes the identity function on b.

The PRES+ model fragment for a typical parbegin-parend block is shown in Figure

34 Chapter 3 PRES+ models and their computations

3.3(e). Both the parallel blocks within the construct use the values of the variables b

and d computed prior to this parallel block; hence, their token values at the place

p1 (with vp1 = b) and p2 (with vp2 = d) are copied in the places p4 and p6 (with

vp4 = vp6 = b) and the places p5 and p7 (with vp5 = vp7 = d) through the respective

transitions t1 and t2 with ft1 and ft2 as the identity mapping. They also serve the

purpose of parallel bifurcation for this example. The variable a is live at the entry

point of only one of the basic block; hence its value need not be copied. The merging

of the two parallel blocks is accomplished by the transition t6 realizing the assignment

statement d = f4(a;e). We now illustrate a PRES+ model for a simple program and

its computation through the following example.

int i=0,k,m,n;
while (i<=10){

m=m+10;
n=n+10;
i++;

}
k=m+n;

Figure 3.4: A simple program

Example 3. Figure 3.4 represents a simple program and Figure 3.5 represents the

corresponding PRES+ model. In Figure 3.5, the place p2 holds the value of the vari-

able i initialized to 0 through the transition t1 associated with the constant function 0;

since every transition should have some pre-place, an in-port p1 is kept as �t1. The

other two in-ports p3 and p4 respectively hold the input values of the variables m and

n. It is to be noted that such declarations (or statements), i.e., “Input m;n” create

only places without creating transitions; the while-loop entry point is captured by the

place p2. The transition t6 captures the right-hand side expression of the assignment

statement “m = m+ 10”. Similarly, the transition t7 captures the assignment state-

ment “n = n+10”. The output place of t6 (t7) therefore should hold the modified value

of the variable m (n); although the in-port p3 (p4) is already designated to hold the

input value of the variable m (n), it cannot be t�6 because in-ports have no incoming

transitions. Hence, a different place p5 (p8) is used as the place holding the values of

the variable m (n) updated once corresponding to the each iteration of the while-loop.

Hence, this place serves as both �t6(�t7) and t�6(t
�
7); it is made to hold the initial input

value of m (n) through a separate transition t4 (t5) with �t4 = fp3g (�t5 = fp4g) and

t�4 = fp5g(t�5 = fp8g). Note that since the statements “m = m+10” and “n = n+10”

3.2 Computations in a PRES+ model 35

p2

p8

p9 p11

t1

t8

id

id
p12

t2 t3

id
ρ1 ρ2

ρ2

ρ1

p3

t4
p5

t6
p10

p4

t5

p7

t7

p1

[c1]
[:c1]

p6

0

vp5 +10

vp10 +1

vp8 +10

vp5 + vp8

N0

c1 : [vp2 � 10]

Figure 3.5: A PRES model.

have no data dependency between themselves, the associated transitions t6 and t7 are

kept as parallelisable transitions. However, their firing have to be after entry to the

loop takes place (i.e., after p2 acquires token either from some segment external to

the loop or after execution of each iteration of the loop. Hence, two synchronizing

places p6 and p7 are required as pre-places of the transitions t6 and t7 respectively;

these synchronizing places should acquire token through firing of a transition t2 hav-

ing p2 as its pre-place. At this stage, since the transition t2 only serves the purpose

of synchronization, its associated function ft2 is of no concern; however, subsequently

we can see why ft2 is the identity function. The transition t2 therefore can be called

the entry transition to the loop initiating the execution of all the parallel threads of

the loop body. Since it is the entry transition, it is associated with the loop condition

i � 10 = c1, say; obviously, there has to be a loop exit transition associated with the

condition :c1; the transition t3 serves this purpose. The transition t8 captures the

update operation “i++” of the loop control variable i. Although this update oper-

ation has no data dependency with the other two statements in the loop body, it is

made to have control dependence with the transitions t6 and t7 for synchronization;

36 Chapter 3 PRES+ models and their computations

hence, synchronizing places p9; p11 are used as the pre-places of t8 and post-places

of t6 and t7; the place p10 holds the value of the loop control variable i which is the

only pre-place of t8 that gets updated through its execution. Now, we can see that

t2 can provide the copy the loop control variable i held in the loop entry place p2;

therefore, the transition t2 is made to have the associated function ft2 as the identity

function (id). Now, the segment reached after exit from the loop comprising the state-

ment “k = m+n” would require a transition having two pre-places holding values of

the variables m and n and a post place corresponding to the variable k. The already

conceived exit transition t3 can serve this purpose with its pre-places p5 (holding the

latest value of m) and p8 (holding the latest value of n) in addition to its already con-

ceived pre-place p2. This immediately underlines the need of associating the transi-

tions t6; t7 in the loop body with the loop entry condition; in general, all the transitions

in a loop body are associated with the loop entry condition conservatively. The place

p12 corresponding to variable k is placed as the post-place of t3 and it is designated

as an out-port because k is an output variable. So the place to variable mapping

fpv : ffp1; p6; p7; p9; p11g 7! δ;fp2; p10g 7! i;fp3; p5g 7! m;fp4; p8g 7! n; p12 7! kg.

Let us now examine how the computation trace of the program, given in Figure

3.4, for the inputs m = 7 and n = 11 is represented by a computation µp12 of the out-

port p12 of the model of Figure 3.5. In the following, for any marking M encountered

along the computation, the second component valM is listed using the same ordering

in which the first component PM is listed. For the inputs m = 7 and n = 11, the initial

marking M0 = hfp1; p3; p4g;hω;7;11ii, where ω stands for any integer. Now, the first

set of maximally parallelisable transitions in the computation is T1 = TM0 = ft1; t4; t5g,

where TMi stands for the set of enabled transitions for the marking Mi; note that �T1 �

inP = fp1; p3; p4g. After firing of (all the members of) T1, the successor marking M+
0

becomes hfp2; p5; p8g;h0;7;11ii=M1; at this stage the bound transitions are ft2; t3g;

the condition c1 = vp2 � 10 associated with t2 is satisfied and the one (:c1) associated

with t3 is false; so the next set in the computation becomes T2 = TM1 = ft2g. After firing

of T2, the successor marking M+
1 = M2 = hfp5; p6; p7; p8; p10g;h7;0;0;11;0ii. So the

next set of transitions T3 = TM2 = ft6; t7g. After firing of T3, the successor marking

M+
2 = M3 = hfp5; p8; p9; p10; p11g;h17;21;17;0;21ii; T4 = TM3 = ft8g. After firing

of T4, the successor marking M+
3 = M4 = hfp2; p5; p8g;h1;17;21ii and T5 = TM4 =

ft2g = T2. So the sub-sequence of the sets of transitions hT3;T4;T2i captures one

iteration of the loop. Hence, it repeats another ten times. The prefix of the computation

3.3 Computational equivalence between two PRES+ models 37

at this stage becomes hT1;T2;(T3;T4;T2)
11i and the resulting marking will be M44 =

hfp2; p5; p8g;h11;117;121ii. At this stage, TM44 = ft3g = T6 because the condition

associated with t3 (= :vp2 � 10) holds. So the computation in terms of a sequence of

transitions is hT1;T2;(T3;T4;T2)
11;T6i and in terms of places:

hh�T1;T �
1 [

�T2;
�
T �

2 [
�T3;T �

3 [
�T4;T �

4 [
�T2

�11
;T �

2 [
� T6;T �

6 i;hvalM0(
�T1)ii =

hhfp1; p3; p4g;fp2; p5; p8g;(fp5; p6; p7; p8; p10g;fp5; p8; p9; p10; p11g;fp2g)
11,

fp2; p5; p8g;fp12gi;hω;7;11ii. The condition of execution:

Rµp12
(fpv(

�T1))fhω;7;11i= fpv(
�T1)g � >

and the data transformation :

rµp12
(fpv(

�T1))fhω;7;11i= fpv(
�T1)g= 238.

�

3.3 Computational equivalence between two PRES+ mod-

els

Two PRES+ models N0 and N1 will not be equivalent unless they are input-output

compatible (i/o-compatible, in short), that is, there is a bijection fin : inP0 $ inP1

between their in-ports and a bijection fout : outP0 $ outP1 between their out-ports;

both the associations fin and fout are consistent with the respective place-to-variable

association f 0
pv of N0 and f 1

pv of N1. In other words, if hp; p0i 2 fin(fout), then f 0
pv(p) =

f 1
pv(p0).

Let N0 : hP0;V; f 0
pv;T0; I0;O0; inP0;outP0i and N1 : hP1;V; f 1

pv;T1; I1;O1; inP1;outP1i

be two i/o-compatible PRES+ models with in-port correspondence fin and out-port

correspondence fout ; we now define the notions of the computational containment and

computational equivalence of two PRES+ models.

Definition 9 (Equivalence of two computations of two Models). Let µ0;p be a compu-

tation of an out-port p of N0 of the form hT0;1;T0;2; : : : ;T0;npi and let µ1; fout(p) be a com-

putation of the out-port fout(p) of N1 of the form hT1;1;T1;2; : : : ;T1;n fout (p)i. The com-

putations µ0;p and µ1; fout(p) are said to be equivalent (represented as µ0;p ' µ1; fout(p)),

if

1. Rµ0;p(f 0
pv(

�T0;1))� Rµ1; fout (p)(f 1
pv(

�T1;1)) and

38 Chapter 3 PRES+ models and their computations

+1

+5

+1

+3

+2

+1 +1

p1

p2

p3

2

4

1p’

p’

3p’

p’

t1

t2
t3

1

2

3

4

t’

t’

t’

t’

[vp2
< 10] [vp2

>=10]

[v
2p’< 10]

[v
2p’
>=10]

(a) (b)

x

y

t

x

y

y

t

Figure 3.6: Computational equivalence of two PRES+ models.

2. rµ0;p(f 0
pv(

�T0;1)) = rµ1; fout (p)(f 1
pv(

�T1;1))

Definition 10 (Computational Containment of Models). The PRES+ model N0 is said

to be contained in the PRES+ model N1, represented as N0 v N1, if, 8p 2 outP0,

for any computation µ0;p = hT0;1;T0;2; : : : ;T0;npi of the out-port of N0, there exists a

computation µ1; fout(p) = hT1;1;T1;2; : : : ;T1;n fout (p)i of the out-port of N1 such that µ0;p '

µ1; fout(p).

Definition 11 (Computational Equivalence of Models). The PRES+ models N0 and

N1 are said to be computationally equivalent if N0 v N1 and N1 v N0.

Now we illustrate how the equivalence of two given computations of two PRES+

models is resolved using the above definition. In the process, we underline the fact that

such equivalence of two given computations of the PRES+ models are to be resolved

symbolically; such symbolic analyses need the respective place to variable associa-

tions f 0
pv and f 1

pv to resolve the equivalence of conditions of executions and equalities

of the data transformations.

Example 4. Let Figures 3.6(a) and (b) depict two PRES+ models N0 and N1, re-

spectively. The variable set V = fx;y; tg. f 0
pv : fp1g 7! x;fp2g 7! y;fp3g 7! t and

f 1
pv : fp

0

1g 7! x;fp
0

2g 7! y;fp
0

3g 7! y;fp
0

4g 7! t. The set of in-ports of the model N0 is

inP0 = fp1g and that of out-port outP0 = fp3g. Similarly, for N1, the inP1 = fp
0

1g and

outP1 = fp
0

4g. Let fin : inP0 $ inP1 be p1 7! p01; let fout : outP0 $ outP1 be p3 7! p
0

4.

Let a computation µ(1)p3 of N0 be hft1g;ft2g;ft2g;ft3gi; the condition of execution is

3.3 Computational equivalence between two PRES+ models 39

R
µ(1)p3

(f 0
pv(

�ft1g)) � R
µ(1)p3

(f 0
pv(fp1g)) � x+ 1+ 5+ 5 � 10^ x+ 1+ 5 < 10^ x+ 1 <

10 � x+ 11 � 10^ x+ 6 < 10^ x+ 1 < 10 � x < 4^ x � �1 and the data trans-

formation is r
µ(1)p3

(f 0
pv(

�ft1g)) = r
µ(1)p3

(f 0
pv(fp1g)) = x+ 1+ 5+ 5+ 1 = x+ 12. Let a

computation µ(1)
p04

of N1 be hft
0

1g;ft
0

2g;ft
0

3g;ft
0

2g;ft
0

3g;ft
0

4gi; the condition of execution

is R
µ(1)

p
0
4

(f 1
pv(

�ft
0

1g))� R
µ(1)

p
0
4

(f 1
pv(fp

0

1g))� x+1+2+3+2+3� 10^ x+1+2+3 <

10^x+1 < 10� x+11� 10^x+6 < 10^x+1 < 10� x < 4^x��1 and the data

transformation is r
µ(1)

p
0
4

(f 1
pv(

�ft
0

1g)) = r
µ(1)

p
0
4

(f 1
pv(fp

0

1g)) = x+ 1+ 2+ 3+ 2+ 3+ 1 =

x + 12. Therefore, R
µ(1)p3

(f 0
pv(

�ft1g)) � R
µ(1)fout (p3)

(f 1
pv(

�ft
0

1g)) and r
µ(1)p3

(f 0
pv(

�ft1g)) =

r
µ(1)fout (p3)

(f 1
pv(

�ft
0

1g)). Hence, µ(1)p3 ' µ(1)
p04

. Suppose another computation µ(2)p3 of N0 be

hft1g;ft2g;ft3gi; the condition of execution is R
µ(2)p3

(f 0
pv(

�ft1g))� R
µ(2)p3

(f 0
pv(fp1g))�

x+ 1+ 5 � 10^ x+ 1 < 10 � x+ 6 � 10^ x+ 1 < 10 � x � 4^ x < 9 and the data

transformation is r
µ(2)p3

(f 0
pv(

�ft1g)) = r
µ(2)p3

(f 0
pv(fp1g)) = x+1+5+1 = x+7. For N1,

let µ(2)
p04

be the computation which is of the form hft
0

1g;ft
0

2g;ft
0

3g;ft
0

4gi; the condition of

execution is R
µ(2)

p
0
4

(f 1
pv(

�ft
0

1g))�R
µ(2)

p
0
4

(f 1
pv(fp

0

1g))� x+1+2+3+� 10^x+1< 10�

x � 4^ x < 9 and the data transformation is r
µ(2)

p
0
4

(f 1
pv(

�ft
0

1g)) = r
µ(2)

p
0
4

(f 1
pv(fp

0

1g)) =

x + 1 + 2 + 3 + 1 = x + 7. Therefore, R
µ(2)p3

(f 0
pv(

�ft1g)) � R
µ(2)fout (p3)

(f 1
pv(

�ft
0

1g)) and

r
µ(2)p3

(f 0
pv(

�ft1g)) = r
µ(2)fout (p3)

(f 1
pv(

�ft
0

1g)). Hence, µ(2)p3 ' µ(2)
p04

. However, when we try to

resolve the question whether N0 v N1, we have to consider all computations of the

out-port p3. Let M0;p3 be the set of all computations of p3. The set M0;p3 is infinite

because of the presence of the loop p2 ! p2. Unlike its individual members, the entire

set M0;p3 cannot be characterized by any symbolic expressions. Hence, the contain-

ment (and equivalence) of PRES+ models cannot be established in the same manner

in which equivalence of individual computation can be resolved. In the subsequent

chapters, we shall introduce the notion of finite paths through which infinite sets such

as M0;p3 can be captured.

�

40 Chapter 3 PRES+ models and their computations

3.4 Restrictions of the model and their implications

The PRES+ model used in this work is essentially a restricted subset of the PRES+

model described in [38]. In the following, we identify the differences. In the article

[38], a PRES+ model is a five tuple; in our context, a PRES+ model is an eight tuple.

The four entities P;T; I and O are common for both the representations. The initial

marking M0 is a member of the PRES+ model tuple reported in [38] which is absent

in our model description because an initial marking (involving values for the tokens)

pertains to a particular invocation of the model. In contrast, the additional members

namely, inP, outP, fpv and V , have been introduced by us in the model tuple; liter-

ature [38] introduces inP, outP in the context of model equivalence. However, it is

felt that inP and outP constitute static features of the model and accordingly can be

included in the model tuple itself. For the remaining two new members fpv and V , it

is important to note that the main objective of the present work is translation valida-

tion of compiler optimization techniques through behavioural equivalence checking

of source programs with their transformed versions. So an association of places with

program variables exist which gets revealed in a natural way while constructing the

model of the program, both manually or automatically. This natural association has

been captured by the function fpv and fruitfully utilized in the subsequent chapters in

establishing the computational equivalence between two i/o-compatible PRE+ mod-

els. The type τ(p) of tokens occupying the place p appears in our model as the set Dp

of values assumed by such tokens; the time components of the τ(p) values are ignored

because our PRES+ models (being targeted at compiler optimization transformation

validation) are untimed.

For [38], the marking M is a function with the set P of places as its domain and

the set of all token values including the empty set as its range. For us, a marking M

is an ordered pair hPM;valMi, where PM � P is a subset of places containing tokens

and valM : PM !tp2PM Dp. Thus, if P = fp1; p2; p3; p4g and M = hfp1; p3g;fp1 7!

14; p3 7! �9gi in our representation, then according to [38], M(p1) = fh14;r1ig and

M(p3) = fh�9;r2igwhere r1;r2 2R+ are the time stamps of the tokens (which are to-

tally absent in our untimed PRES+ model) and M(p2) =M(p4) = /0. Similarly, in [38],

if M(p1) = fh15;2:3ig;M(p2) = fh�11;1:7ig;M(p4) = fh5;9:7ig and M(p3) = /0,

then in our representation M = hfp1; p2; p4g, fp1 7! 15; p2 7! �11; p3 7! 5gi (time

stamps are ignored). However, the marking M0, represented according to [38] as

3.4 Restrictions of the model and their implications 41

M0(p1) =fh10;1:2i;h5;2:5ig and M
0

p2
= M

0

p3
= M

0

p4
= /0, cannot be represented in

our model which is strictly one-safe permitting no more than one token in a place at

any point (when the marking M0 involves two tokens in p1). Hence our representation

of markings is synonymous to that in literature [38] for the one-safe models shorn of

the time values.

The enabled transitions in our work, however, are different from the those in liter-

ature [38]. The model [38] permits non-determinism. Consider, for example, a place

marking PM = fp1; p2g with p�1 = ft1; t2g and p�2 = ft3g. For both transitions t1 and

t2, let gt1 , gt2 be identically true (independent of token values at p1 and p2 accord-

ing to [38]). In this case, according to the model of [38], the enabled transitions are

the same as the bound transitions, i.e., ft1; t2; t3g. Our model does not permit non-

determinism. Hence, gt1 ^ gt2 should be unsatisfiable. Accordingly, we could have

two mutually exclusive sets of enabled transitions corresponding to this place mark-

ing namely, TM1 = ft1; t3g and TM2 = ft2; t3g.

For a given marking M, literature [38] permits firing of any one of the transitions

enabled under M; newer marking results for each firing step. For the present work,

the enabled transitions are fired simultaneously in parallel because they cannot have

any data dependency on each other. Thus, for the above example scenario, the im-

mediately reachable place markings in [38] can be PM+
1
= ft�1 ; p2g (disabling t2 here),

PM+
2
= ft�2 ; p2g (disabling t1 here) or PM+

3
= ft�3 ; p1g. This is how only one of the

non-deterministic choices regarding firing of t1 and t2 is exercised at the expense of

other. Since for both the immediately reachable place markings PM+
1
;PM+

2
, t3 remain

enabled, the next step of firing can yield PM++
1

= ft�1 ; t
�
3g and PM++

2
= ft�2 ; t

�
3g as two

mutually exclusive immediately reachable place markings. For our model, one of t1 or

t2 being chosen deterministically based on their guard conditions, we reach in one step

PM++
1

or PM++
2

(mutually exclusive of one another) by simultaneous firing of ft1; t3g or

ft2; t3g, respectively.

The notion of successor marking used in the present work corresponds to the “im-

mediately reachable” marking (Definition 3.1) of literature [38]. The difference is due

to simultaneous firing of all the enabled transitions in our model versus their firing

based on time parameters and/or exercising of some non-deterministic choice in [38].

It is obvious that for our models, since there is no data dependency among the en-

abled transitions, any interleaving of their firing creates the same effect in terms of the

42 Chapter 3 PRES+ models and their computations

variables values as that produced by their simultaneous firing. We have provided the

formal definition of successor marking (Definition 1) in a form suitable for devising

the definition of computations in a PRES+ model which, in turn, permits us to address

the theoretical issues of equivalence checking mechanisms described in this work.

The original PRES+ model reported in [38] is k-safe which necessitates non-

determinism to be accommodated. We have considered deterministic PRES+ mod-

els because our objective is to use PRES+ models for representing programs written

in some conventional high level C like languages; such programs having no writable

shared variables among the parallel threads are inherently deterministic.

The notion of “function equivalence” [38] is what is relevant for our work. The

definition of “functional equivalence” of literature [38] considers initial markings to

have identical token values at the input places but may also have token values at var-

ious non-input places; all reachable markings from such initial markings, which have

no tokens in the input places and have identical tokens in their non-input places, should

have identical tokens in the output places. In the domain of application of the present

work, we have not identified any situation where initial marking need to have tokens in

the non-input places. Since input places do not have any incoming arc (as also in liter-

ature [38]), no reachable marking for a given initial marking can put token again in the

input places. Other than the difference in permitting the initial markings to have tokens

in some non-input places, there is no other fundamental difference between the defini-

tion of functional equivalence presented in [38] and that of computational equivalence

presented here. The notion of functional equivalence, however, does not concern itself

with any symbolic analysis mechanism which is inevitable for establishing functional

equivalence in an absolute sense (i.e., independent of the specific computation corre-

sponding to a given initial marking). The original literature on PRES+ models [38]

concentrates on property verification and not on functional equivalence checking. In

contrast, for our work, we need definitions which can be used to devise equivalence

checking methods and validate them. So, for our work, the definitions of computation

and computational equivalence had to be devised anew in a form that permits us to

treat the theoretical issues regarding the equivalence checking mechanisms described

in the thesis.

3.5 Conclusion 43

3.5 Conclusion

In this chapter we have introduced the PRES+ models formally and given a formal

definition of the computational semantics of a PRES+ model, the computational con-

tainment and computational equivalence of two PRES+ models. These fundamental

notions are used subsequently throughout the thesis.

Chapter 4

Dynamic Cut-point induced path
construction method

When a PRES+ model contains loops, the number of traversals through such a loop

depends on the in-port data. Since the in-ports can assume infinite number of com-

binations of input values, the number of computations of any out-port can be infinite.

To establish computational equivalence of two models, all such computations must

be accounted for. For this reason, the notion of finite computation paths, henceforth

referred to simply as paths, is used so that any computation of an out-port can be cap-

tured in terms of these paths. To do so, we need to cut the loops designating some of

the places as cut-points so that each loop contains at least one cut-point. A path origi-

nates from a set of places which contains cut-points and ends with a single cut-point.

In this chapter, we discuss a mechanism of inserting cut-points so that the resulting

paths capture any computation of the model; we then describe a path construction

procedure using such cut-points.

4.1 Computation paths of a PRES+ model

For establishing equivalence between two PRES+ models, for any of their out-ports,

p say, the set Mp of all possible computations of p should be covered. In the previous

chapter, it has already been pointed out that while any individual computation µp in

Mp can be characterized by two symbolic expressions Rµp and rµp , the entire set Mp

45

46 Chapter 4 Dynamic cut-point induced path construction method

p1 p2

p3
p4

p5

p6 p7 p8

p9 p10 p11 p12

p13
p14

p15

p16

t1 t2

t3
t4

t5 t6 t7 t8

t9 t10

t11 t12

t13 t14

Figure 4.1: Need of Paths of a PRES+ model.

cannot be characterized in the same manner when loops are present. A conventional

approach in such scenarios is to use the concept of finite paths such that any com-

putation can be represented in terms of these paths. We illustrate the mechanism of

capturing computations in terms of paths using the following example.

Example 5. Let us consider the PRES+ model given in Figure 4.1. The set of all

computations of the out-port p16 is given by Mp16 = fhM0;(ms)
n;M5i, n� 0g, where

PM0 � fp2g and ms is the sub-sequence hM1;M2;M3;M4i of markings with PM1 �

fp5g;PM2 � fp7; p8g;PM3 � fp11; p12g, PM4 � fp15g, PM5 � fp16g. Obviously, we

cannot obtain a single symbolic expression for condition of execution and a symbolic

data transformation expression for the set Mp16 as a whole, in the same way we obtain

them for any of its individual members.

For this reason, we introduce the notion of finite paths so that any member of Mp16

can be considered as a finite concatenation of the paths. In particular, let the sequence

of places hfp2g;fp5gi be designated as a path α1, the sequence hfp5g;fp8gi =

hfp5g;fp7gi be designated as α2, the sequence hfp7; p8g;fp11, p12g;fp15g;fp5gi be

designated as α3 and the sequence hfp7; p8g;fp11; p12g;fp15g;fp16gi be designated

as α4. Then, the set Mp16 can be represented as fα1:(α2:α3)
n:α4;n� 0g. It may now

be noted that for establishing the equivalence of all computations of the out-port p16

of the above model N0, say, with those of fout(p16) in another i/o-compatible model

N1, we may similarly identify a finite number of paths in N1 to capture M fout(p16) and

4.1 Computation paths of a PRES+ model 47

try to establish a path level equivalence among these sets of paths. The set of paths

α1;α2;α3;α4 have been obtained by cutting the loop from p5 to p5 by introducing a

cut-point at p5. (Although for this example, we depict a path as a sequence of sets of

places, it becomes more convenient to represent a path primarily as a sequence of sets

of transitions.) �

The above example demonstrates how the notion of finite paths can be used to

capture any computation of an out-port. To do so, we need to designate some places

as cut-points so that each loop contains at least one cut-point. Such cut-points can be

identified utilizing the concept of back edges as defined below.

: Static cut−point

: Dynamic cut−point

: Dynamic cut−point induced path

p1

p2
p3

p4

p5 p6

p7
p8

p9

p10

p11
p12

p13

t1 t2

t3 t4

t5
t6

t7

t8 t9

t10

Figure 4.2: Paths of a PRES+ model.

Definition 12 (Static cut-point). A place p is designated as a static cut-point with

respect to an arbitrary DFS traversal starting from some in-port and covering all the

in-ports if (i) p is an in-port, or (ii) p is an out-port or (iii) there is an edge ht; pi

which is a back edge with respect to that DFS traversal.

It is to be noted that since there may be more than one DFS traversal for a given

graph, there may be different sets of back edges corresponding to these traversals;

thus, the set of static cut-points may differ from one DFS traversal to another; however,

it is unique for any particular one. We need just one such set with respect to a single

48 Chapter 4 Dynamic cut-point induced path construction method

DFS traversal for obtaining the cut-points to cut each of the loops in at least one cut-

point (not necessarily, minimally).1

In Figure 4.2, for example, the in-ports p1; p2; p3 and p6 are cut-points. A DFS

traversal of the graph (model) identifies the edge ht9; p10i as a back edge; hence, p10

is a cut-point. Place p13 being an out-port is also a cut-point.

Definition 13 (Path in a PRES+ model). A finite path α in a PRES+ model from a set

T1 of transitions to a transition t j is a finite sequence of distinct sets of parallelisable

transitions of the form hT1 = ft1; t2; : : : ; tkg;T2 = ftk+1; tk+2; : : : ; tk+lg; : : : ;Tn = ft jgi

satisfying the following properties:

(i) All the members of �T1 are cut-points.

(ii) All the members of T �
n are cut-points.

(iii) There is no cut-point in T �
m , 1� m < n.

(iv) 8i;1 < i � n;8p 2 �Ti, if p is not a cut-point, then 9k;1 � k � i� 1; p 2 T �
i�k;

thus, any pre-place of a transition which is not a cut-point must be a post-place

of some preceding transition in the path.

(v) There do not exist two transitions ti and tl in α such that �ti\ �tl 6= /0.

(vi) 8i;1� i� n, Ti is maximally parallelisable within the path, i.e., 8l 6= i;8t 2 Tl in

the path, Ti[ftg is not parallelisable.

(vii) There exists a computation (of some out-port) having a sub-sequence of markings

of places hPMi;PMi+1 ; : : : ;PMi+ni such that

(a) �T1+ j � PMi+ j ;0� j < n,

(b) 8 j;1� j � n;PMi+ j is a successor place marking of PMi+ j�1 and

(c) T �
n � PMi+n .

(viii) 8t;1� i < n; jT �
i j= jTij.

The set �T1 of places is called the set of pre-places of the path α, denoted as �α;

similarly, the set T �
n is called the set of post-places of the path α, denoted as α�. We can

1Why they are designated as static cut-points becomes clear shortly.

4.1 Computation paths of a PRES+ model 49

synonymously denote a path α= hT1;T2; : : : ;Tni as the sequence h�T1;
�T2; : : : ;

�Tn;T �
n i

of the sets of places from the place(s) �T1 to the place(s) T �
n .

The clauses in Definition 13 of paths have the following meaning. Clauses (i)–(iii)

ensure that no sequence of sets of parallelisable transitions that constitutes a loop seg-

ment can be a proper sub-sequence of a path. Thus, for any combination of values at

the input places �α, the computation of path α involves execution of all its transitions

exactly once. Clause (iv) ensures that any computation of the path α is completely

defined in terms of the token values at �α; more specifically, each transition uses to-

ken values either available at �α or computed in some preceding transition within the

path. Clause (v) ensures that a path does not involve mutually exclusive transitions. In

other words, negation of clause (v) implies existence of transitions ti; tl having com-

mon pre-place which means that either ti or tl (and not both) can execute for any token

value at this common pre-place. Clause (vi) ensures that between two distinct sets of

transitions of a path, there is always a strict sequencing. Clause (vii) ensures that the

sequence depicted in the path must appear as a sub-sequence of an overall computa-

tion of the model. Clause (viii) ensures that paths resulting out of forking of parallel

threads do not have any common prefix.

Example 6. To examine how finite paths can capture a computation involving an

unknown number of loop traversals, let us consider the example of Figure 4.2. By

Definition 12, the set C of static cut-points is fp1; p2; p3; p6; p10; p13g and the paths

will be α1 = hft1g;ft3g;ft5g;ft7; t8g;ft10gi, α2 = hft2g;ft4g;ft6gi and α3 = hft9gi

respectively. Let us now try to express a computation µp13 of the out-port p13 in

terms of paths, where µp13 = hT1 = ft1; t2g;T2 = ft3; t4g;T3 = ft5; t6g;T4 = ft7; t9g;T5 =

ft9g;T5 = ft9g;T6 = ft8g;T7 = ft10gi; the computation, however, cannot be expressed

in terms of the paths fα1;α2;α3g because the member ft7; t8g of the path α1 gets

fragmented and combines in parallel with the path α3 in the member T4 in µp13 . If

we had p4; p5; p9; p11 and p12 also as cut-points, the path-set would have been α
0

1 =

hft1gi;α
0

2 = hft2gi;α
0

3 = hft3g;ft5gi;α
0

4 = hft4g;ft6gi;α
0

5 = hft7gi;α
0

6 = hft9gi;α
0

7 =

hft8gi and α
0

8 = hft10gi (shown by dotted triangles in Figure 4.2). Now, intuitively,

the computation µp13 could be depicted as the sequence (α
0

1 k α
0

2):(α
0

3 k α
0

4):(α
0

5 k

α
0

6):α
0

6:α
0

6:α
0

7:α
0

8 of concatenation of parallelisable paths from the set fα
0

1;α
0

2;α
0

3;α
0

4;

α
0

5;α
0

6;α
0

7;α
0

8g, where (α1 k α2) means parallel execution of α1 and α2 and (α1:α2)

means sequential execution α1 followed by α2. �

50 Chapter 4 Dynamic cut-point induced path construction method

The above example underlines the need for introducing further cut-points and the

notion of parallel paths and their concatenation for capturing computations. For the

former, a notion of token tracking execution is necessary which is described as follows.

The notion of parallel paths is introduced subsequently.

A token tracking execution essentially captures all computations of the model with

the token values abstracted out and every loop traversed exactly once. Therefore, in

the context of token tracking execution, the term marking means only place marking.

Thus, a token tracking execution starts with an initial marking comprising tokens at the

in-ports and tracks the progress of the tokens through the successor markings avoiding

repetitions of sub-sequences of markings. If a given marking involves a token holding

place with more than one outgoing transition, then firing of such transitions will be

mutually exclusive of each other; hence there may be more than one alternative set of

successor markings all of which are covered in a DFS manner by the token tracking

execution mechanism. Note that the number of times a loop is executed varies from

one execution to another depending on the input token values. During progression

of tokens, if any marking contains at least one static or dynamic cut-point, mark all

places in the marking as dynamic cut-points and if any transition contains more than

one post places, all of these post places are also marked as dynamic cut-points. If

there are parallel threads with at least one of them involving a loop, then the places

encountered along all such threads may all become dynamic cut-points. We refer to

such a scenario as a degenerate case, whereupon dynamic cut-points are introduced

exhaustively in all the places of the markings, both in the loop body as well as in other

parallel threads. Algorithms 1 and 2 depict the procedure of token tracking execution

(These algorithms occur embedded in Algorithms 5 and 3 of the main module). The

definition of degenerate case is as follows.

Definition 14 (Degenerate phase of token tracking execution). The degenerate phase

of a token tracking execution sets in when the latter encounters a place marking PM

such that jPMj > 1 and PM contains at least one static cut-point having a back edge

leading to itself. The generation phase gets over when the token tracking execution

encounters a place marking PM having just one post-transition, i.e., jP�
Mj � 1 or PM

contains only out-ports.

Thus, for the starting of each degenerate phase of the token tracking execution, the

condition jPMj > 1 indicates that the token tracking execution is traversing through

4.1 Computation paths of a PRES+ model 51

parallel threads; the clause “PM contains at least one static cut-point having a back

edge leading to itself” indicates that at least one of the parallel threads contains a

loop. The if-statement 7-9 in the function tokenTrack (Algorithm 2) captures the

setting in of the degenerate phase. The ending of the degenerate phase is indicated by

the condition jP�
Mj= 1 capturing the fact that all the parallel threads have merged. The

if-statement 4-6 of the function tokenTrack (Algorithm2) captures the termination of

the degenerate phase. We illustrate the scenario by the following example.

Algorithm 1 SETOFDCP initTokenTrack (N)
Inputs: The input parameter is the PRES+ model N.
Outputs: The set Cd of dynamic cut-points

1: Mh(inP; /* Place � marking at hand � initialized to in-ports*/
Cd = /0 /* set of dynamic cut-points � initially empty */ degenerate = false;

2: T = compAllSetsOfConcurTrans (Mh;N);
3: for T 2 T do
4: Cd =Cd[tokenTrack(Cd ;Mh;T , degenerate, N)
5: end for
6: return Cd

Algorithm 2 SETOFDCP tokenTrack (Cd;Mh;Te, degenerate, N)
Inputs: The first parameter is set Cd of dynamic cut-points. The second parameter is a marking Mh.
The third parameter is a set Te of enabled maximally parallelisable transitions. The fourth parameter
degenerate is a flag value. The fifth parameter is the PRES+ model N.
Outputs: Cd

1: Cd = /0;
2: Mnew(T �

e ; /* post-places of Te acquire tokens */
3: Mh((Mh�

�Te)[Mnew; /* modify Mh by deleting the pre-places of the concurrent transitions and
adding their post-places */

4: if (jM�
h j � 1 and degenerate = true) then

5: degenerate = false;
6: end if
7: if (there exists a back edge leading to some p in Mh and jMhj> 1) then
8: degenerate = true;
9: end if

10: if (degenerate = true or at least one p in Mh is a cut-point or jT �
e j> jTej) then

11: Cd =Cd [Mh
12: end if
13: T = compAllSetsOfConcurTrans (Mh;N);

/* unmark all the marked transitions */
14: for each Te 2 T do
15: Cd =Cd[tokenTrack (Cd ;Mh;Te, degenerate, N) //call itself recursively;
16: return Cd ;
17: end for

Example 7. Let us consider the designation procedure of dynamic cut-points for the

PRES+ model given in Fig. 4.3. The token tracking execution starts with the set

fp1; p2; p3; p6g as the initially marked places. After firing of the enabled transitions

52 Chapter 4 Dynamic cut-point induced path construction method

t1 t2

p1

p2 p3

p4
p5 p6

p

p
12

7

9

p
10

t5
t6

t7

t8

p

t9

: Static cut−point

: Dynamic cut−point

t3 t4

p
8

p
11

p

p

9

9

9

(2)

p(1)

(n)

p
13

t10

7

7

7

t

t

t
(n)

(2)

(1)

p
14

t11

Figure 4.3: Dynamic cut-point introduction

t1 and t2, the next set of marked places becomes fp1; p4; p5; p6g; as p1 and p6 are

already designated as (static) cut-points, the places p4 and p5 are designated as

(dynamic) cut-points. From the set fp1; p4; p5; p6g of marked places, the next set

of enabled transitions is found as ft3; t4g from which the following alternating sub-

sequence of places and transitions is obtained: fp7; p8g ! ft5; t6g ! fp9; p10g. At

this point, since p10 is a (static) cut-point, p9 is designated as a (dynamic) cut-point.

Also since p10 has a back edge, the degenerate phase sets in. The place p10 has two

out-transitions t8 and t9. Therefore, two alternative sets of enabled transitions are

obtained for the marking, namely, ft7; t8g and ft7; t9g. These two alternatives are ex-

plored in a DFS manner. For the set ft7; t9g of transitions, the next marking becomes

4.1 Computation paths of a PRES+ model 53

fp(1)9 ; p10g; since p10 is a static cut-point, p(1)9 becomes a dynamic cut-point. Now

it can be clearly seen that since the number of traversals through the loop from p9

to itself is not known, all of the places p(2)9 through p(n)9 and also p11 would become

dynamic cut-points. As long as the loop executes, the marking remains as fp10; p11g.

Finally, the loop terminates resulting in the marking fp11; p12g whereupon p12 also

becomes a dynamic cut-point. At this stage the enabled transition becomes the sin-

gleton set ft10g indicating merging of the parallel threads; under this situation, the

degenerate case ceases to exist. After firing of ft10g, the next marking becomes fp13g.

At this stage the enabled transition becomes ft11g and the next marking is fp14g. It

is to be noted that p14 is an out-port. Therefore, token tracking execution cannot pro-

ceed any further. Now the token tracking execution backtracks up to the set fp9; p10g

of places and takes the other alternative of enabled transitions, i.e., ft7; t8g. For the set

ft7; t8g of transitions, the successor marking becomes fp(1)9 ; p12g; at this stage, it is to

be noted that the places p(1)9 and p12 are already designated as dynamic cut-points,

therefore, no further cut-point designation takes place till the marking reaches p14.

When the marking is fp14g, the token tracking execution ends because it has covered

all the alternatives and p14 is an out-port. If the DFS traversal pursues ft7; t8g as the

first alternative, then the token tracking execution proceeds without introducing any

further cut-points till the marking reaches p14. However, when the execution takes the

second alternative, i.e., ft9; t7g, the degenerate phase sets in and, therefore, it desig-

nates the places p(1)9 to p11 and p12 as dynamic cut-points. Similarly, when the set of

enabled transitions is ft10g, the degenerate case ceases to exist. Therefore, the set of

dynamic cut-points is computed as fp4; p5; p9; p(1)9 ; : : : ; p(n)9 ; p11; p12g. �

We can now formalize the definition of dynamic cut-points as follows.

Definition 15 (Dynamic cut-point). A place p is designated as a dynamic cut-point if

during a token tracking execution of the model (with static cut-points already incorpo-

rated), a place marking PM containing p is encountered such that one of the following

three conditions is satisfied:

(i) PM contains at least one (static or dynamic) cut-point, or

(ii) PM contains more number of places than its pre-transitions, i.e., jPMj > j�PMj;

this indicates that the token tracking execution has reached a point of creation

of some parallel threads; or

54 Chapter 4 Dynamic cut-point induced path construction method

(iii) token tracking execution is in the degenerate phase.

It is to be noted that a cut-point is designated as static based on some static struc-

tural features of the PRES+ model (namely, in-ports, back edges and out-ports). In

contrast, the dynamic cut-points are determined by a token tracking execution of the

model (hence the qualifier dynamic). The definition of path (Definition 13) is modified

with cut-points read as both static and dynamic cut-points. Also, from now onwards,

by cut-points we will mean both static and dynamic cut-points.

The set of static cut-points is not unique; as explained earlier, it depends on the

DFS traversal used to identify the back edges. Since the set of static cut-points is

used during token tracking execution, the set of dynamic cut-points is also not unique;

thus, the set of cut-points is not unique. However, given a set of static cut-points, the

set of dynamic cut-points is unique irrespective of the order in which the choices are

exercised during DFS traversal of the token tracking execution.

4.1.1 Characterization of a path

We associate with a path α two entities namely, Rα(fpv(
�α)), the condition of execu-

tion of the path α, and rα(fpv(
�α)), the data transformation along the path α. For any

computation µα of the form hT1;T2; : : :i of the path α, for any marking M = hPM;valMi,

the predicate Rα depicts the condition that must be satisfied by valM(�α) so that α is

executed for that marking. The data transformation rα depicts the token value obtained

in α� after execution of α. Thus, the places in α� contain the value rα(fpv(
�α)) after

execution of the path α.

Example 8. Figure 4.4(a) depicts a PRES+ model having p0; p1; p2; p3 and p7 as

cut-points following the static and dynamic cut-point introduction rules given in the

previous section. So the corresponding paths are α1 = hft0gi, α2 = hft1gi;α3 =

hft2; t3g;ft4g;ft5gi and α4 = hft2; t3g, ft4g;ft6gi, respectively. Figure 4.4(b) depicts

how the data transformation (rα3) and the condition of execution (Rα3) for the path

α3 are computed. A forward traversal along the forward direction of the edges of the

path α3 from p2; p3 to p1 is used for this purpose. Instead, we may use backward

traversal (along the edges in the reverse direction) as an alternative. In Figure 4.4(b),

let the token values at both p2 and p3 be vp2 and vp3 respectively, and the conditions

4.1 Computation paths of a PRES+ model 55

��
��
��

��
��
��

��
��
��

��
��
��

p0

p1

p2 p3

p4 p5

p6

t0

t1

t2 t3

t4

t5

p
7

[c1]
[c2]

t6

f0

f1

f 2 f 3

f4

f 5 f 6

(a)

3

α1

α
2

α
4

α

(vp3

c1(f4(f3(v)), f2p3
(vp

2
))

(vp))
2

t2 t3f3
f2

p5
p4

f4 t4

t5f5

p1

p3

p6

p2

p3

(vp2
))

true true

true

(vp))

true

f5(f4(f3

traversal
Forward

(b)

vp
2

 v

f2

true

3
f3

(f

)), f 2

2(vp
2
))f 34 (vp

3
), f

Figure 4.4: Computation of the characteristics of a path.

gt2 and gt3 associated with the t2 and t3 are true. The token values at both p4 and

p5 after firing of both t2 and t3 becomes vp4 = f2(vp2) and vp5 = f3(vp3), respectively

and the condition remains true. After firing of t4, the token value at p6 becomes

vp6 = f4(vp4;vp5) = f4(f2(vp2); f3(vp3)) and the condition still remains true. When

the condition c1 associated with the transition t5 is satisfied by vp6 , t5 fires. After firing

of t5, the token value at p1 becomes vp1 = f5(vp6) = f5(f4(f2(vp2)); f3(vp3)) which

is to the data transformation rα3 of the path α3 and the condition of execution Rα3 is

c1(f4(f2(vp2); f3(vp3))). �

4.1.2 Computation in terms of concatenation of parallel paths

Similar to the succeeds–relation � over the set of transitions, we can define succeeds

relation (denoted again as �) over the set of paths as follows.

Definition 16 (Successor relation between two paths). A path αi succeeds a path α j,

denoted as αi � α j, if there exists a set of paths αk1;αk2; : : : ;αkn , a place pi 2
�αi and

a set of places fpkm 2
�αkm;1�m� ng such that h last(α j); pk1i; h last(αk1); pk2i; : : : ;

h last(αkn); pii 2 O � T �P, n � 0, and none of them is a back edge. The expression

αi � α j is used as a shorthand for :αi � α j.

56 Chapter 4 Dynamic cut-point induced path construction method

Now we define the notion of parallelisable paths and concatenation of paths.

Definition 17 (Parallelizable pairs of paths). Two paths αi and α j are said to be par-

allelisable, denoted as αi � α j, if

(i) αi � α j and α j � αi and

(ii) 8αk;αl; [αk 6= αl ^αi � αk^α j � αl !
�αk\

�αl = /0 _

9αm;αn(αm 6= αn^αm � αk^αi � αm^

αn � αl ^α j � αn^α�
m\α�

n 6= /0)].

When αi � α j, their parallel combination is denoted as αi k α j.

In clause(ii) of the above definition, the first disjunct in the consequent necessitates

that the path αi;α j or any other paths preceding αi and α j should have no common pre-

places; the second disjunct necessitates that (even if the first disjunct does not hold,)

there should be some intervening paths preceding αi and α j having some common

post-places (i.e., following these paths the control flow must have merged). It is to be

noted that a parallelisable pair of paths is not a path.

Definition 18 (Set of parallelizable paths). A set QP = fα1;α2; : : : ;αkg of paths is

said to be parallelisable if 8i; j;1 � i 6= j � k, αi � α j holds. Alternatively it is

also denoted as (α1jjα2jj : : : jjαk). It is to be noted that the members of any set of

parallelisable paths can be executed in any arbitrary order.

Definition 19 (Concatenation of a path to a set of parallelizable paths). A path α

is said to be a concatenated path obtained by concatenation of a path α
0

to a set

QP = fα1; : : : ;αkg of parallelisable paths if 8i;1 � i � k;α�
i �

�α
0
. The path α is

denoted as (α1 k : : : k αk).α
0
. The intermediary cut-points (

S
1�i�k α�

i) lose their cut-

point designation so that the concatenated path α does not have any intermediary

cut-points.

The characterization of a concatenated path is as follows: Let α1; : : : ;αk be paral-

lelisable paths having a successor path α
0
; that is, αi, 1 � i � k, satisfies the relation

α�
i \

�α
0
6= /0. Let α be the concatenated path (α1 k α2 k : : : k αk):α

0
. In the following

4.1 Computation paths of a PRES+ model 57

we describe the method of obtaining the condition of execution Rα and the data trans-

formation rα of the path α from Rαi , rαi , 1� i� k, R
α
0 and r

α
0 . Let fpv(

�αi) (fpv(α
�
i))

be the vector of variable (names) associated with the places of �αi(α
�
i);1 � i � k, re-

spectively. Let v be the vector of variables associated with the output places of α�
i ;1�

i � n. Obviously v = hrα1(fpv(
�α1)), rα2(fpv(

�α2)); : : : ;rαk(fpv(
�αk))i. Hence Rα =

Vk
i=1 Rαi(fpv(

�αi))^R
α
0 (fpv(

�α
0
))fv= fpv(

�α
0
)g and rα = r

α
0 (fpv(

�α
0
))fv= fpv(

�α
0
)g

where, fv= fpv(
�α

0
)g is a substitution of fpv(

�α
0
) by v. We illustrate the computation

of Rα and rα through the following example.

p1
p2 p3 p4 5p p6

p7 p8 p9

’

vp1
+vp2

vp3
−vp4

v
7
< (vp8

−vp9
)p

vp7
*vp8

/vp9
()

vp1
 <= vp2

vp3
< vp

4

α
1

α
2

pv
5
*v p

6

vp5
= vp6

α
3

α

v

α

Figure 4.5: Concatenated Path of a PRES+ model.

Example 9. Fig 4.5 depicts three paths α1;α2 and α3 having a successor path α
0
.

So, the concatenated path α is of the form (α1 k α2 k α3):α
0
. Let Rα1 be vp1 �

vp2 , rα1 be vp1 + vp2 , Rα2 be vp3 < vp4 , rα2 be vp3 � vp4 , Rα3 be vp5 = vp6 , rα3 be

vp5 � vp6 , R
α
0 be vp7 < vp8 � vp9 , r

α
0 be vp7 � vp8=vp9 . Let v be hvp7 ;vp8;vp9i and v0 be

hrα1(fpv(
�α1));rα2(fpv(

�α2));rα3(fpv(
�α3))i= hvp1 +vp2;vp3�vp4;vp5 �vp6i. There-

fore, the condition of execution

Rα =Rα1(fpv(
�α1))^Rα2(fpv(

�α2))^Rα3(fpv(
�α3))^R

α
0 (v)fv0=vg, i.e., (vp1 � vp2)^

(vp3 < vp4)^ (vp5 = vp6)^ (vp7 < vp8 � vp9)

fhvp1 + vp2 , vp3 � vp4 , vp5 � vp6i=hvp7;vp8 ;vP9ig

= (vp1 � vp2)^ (vp3 < vp4)^ (vp5 = vp6)^ ((vp1 + vp2)< (vp3 � vp4)� (vp5 � vp6)).

The data transformation is

58 Chapter 4 Dynamic cut-point induced path construction method

rα = r
α
0 (v) fv0=vg,

i.e., (vp7 � vp8=vp9)fhvp1 + vp2;vp3 � vp4;vp5 � vp6i=hvp7 ;vp8;vP9ig

= (vp1 + vp2)� (vp3 � vp4)=(vp5 � vp6). �

From a given set P of places, there can be more than one set of maximally paral-

lelisable transitions because one or more places in P might feature multiple outgoing

transitions; let T1;T2; : : : ;Tk be all the sets of maximally parallelisable transitions from

P. They satisfy the following properties:

Prop 1: P\ �Ti 6= /0;1� i� k.

Prop 2: �Ti\
�Tj 6= /0;1� i 6= j � k, because if we have Ti, Tj, i 6= j such that

�Ti\
� Tj = /0, then Ti[Tj is parallelisable and Ti;Tj � Ti[Tj are not maximal.

Prop 3: For any i;1 � i � k, let Ri be the conjunction of conditions associated with

the members of Ti such that Ti is fired only if Ri(fpv(P)) holds. From property

(Prop 2) and the fact that the model is deterministic, it follows that for all i; j,

1� i 6= j � k, Ri(fpv(P))^R j(fpv(P)) is unsatisfiable. Also, since the model is

completely specified,
Wk

i=1 Ri(fpv(P)) is valid. Hence, given any set P of places,

there is a unique collection of sets of maximally parallelisable transitions which

cover all the post-transitions of P.

The following theorem captures the uniqueness of the set of paths obtained from a

given set of cut-points.

Theorem 1. For any PRES+ model N, for a set of cut-points that includes all the

static cut-points, as identified through Definition 12, and all the dynamic cut-points as

defined in Definition 15, the set of paths covering all the transitions is unique.

Proof. Let there be two distinct sets Q1 and Q2 of paths where each of the sets covers

all the transitions of the given PRES+ model N. Let α = hT1;T2; : : : ;Tni be a path

such that α 2 Q1�Q2. We argue that any member Ti of α, 1 � i � n, represents the

only way to group the transitions of Ti into a maximally parallelisable set and hence

conclude that α must be in Q2 as well. We prove it by induction on i.

Basis (i = 1): Note that �T1 = �α because if �T1 �
�α, then after firing of T1 the

marking will have places of
�
�α� �T1

�
[T �

1 . Hence from Definition 15 of dynamic

4.1 Computation paths of a PRES+ model 59

cut-points, all the members of T �
1 will be dynamic cut-points and hence the path α

will not have any member other than T1. From clause (6) of the definition of path

(Definition 13), the set T1 is given to be a maximally parallelisable set of transitions

from �α in the sequence α. From property Prop 3 above, T1 is unique among all the

maximally parallelisable transition sets from �α.

Induction hypothesis: For any k, 1 � k < n, let Tk in α be a unique way to group

all its transitions into a maximally parallelisable set from a set Pk of places, where for

k = 1;Pk =
�α and for 1 < k < n, Pk =

�
T �

1 [T �
2 [: : :[T �

k�1
�
�
�
�T2[: : :[�Tk�1

�
.

Induction step: Let Tk+1 be one of the maximally parallelisable sets of out-going

transitions from the set Pk+1 of places; Pk+1 =
�
Pk �

�Tk
�
[T �

k = Pk [T �
k �

�Tk =�Si=k
i=1 T �

i
�
�
�Si=k

i=2
�Ti

�
where all the sets Ti;1 � i � k, are unique by induction hy-

pothesis. It basically collects all the post-places of the previous sets T1; : : : ;Tk�1 which

are not covered as the pre-places of T2; : : : ;Tk, and all the post places of Tk. By con-

struction of the path α, Tk+1 is a maximally parallelisable set of transitions from the

set Pk+1 of places. From property P3, Tk+1 is unique among all the possible sets of

maximally parallelisable transitions arising from Pk+1. This completes the induction.

Thus, the transitions of T1; : : : ;Tn in α cannot be covered by any other sequence of

parallelisable transitions. Since Q2 contains all paths which cover all the transitions

of the model, it must cover the transitions of α (in a single collection) in the same way

as α does. Hence α =2 Q1�Q2. Thus, Q1�Q2 = /0. Similarly, it can be shown that

Q2�Q1 = /0 and thus Q1 = Q2.

Definition 20 (DCP induced path cover). A finite set of paths Π = fα0;α1; : : : ;αkg is

said to be a path cover of a PRES+ model N if any computation µ of an out-port of N

can be represented as a sequence of concatenations of parallelisable paths from Π.

In Example 6, it is noted that the set fα1;α2;α3g of paths which are obtained

only from the static cut-points is not a path cover. Whereas, the set fα
0

1;α
0

2;α
0

3;α
0

4;

α
0

5;α
0

6;α
0

7;α
0

8g of paths which are obtained from both static and dynamic cut-points is

a path cover.

Theorem 2. Let C be a set of cut-points that includes all the static cut-points, as

identified through Definition 12, and all the dynamic cut-points, obtained by a token

tracking execution of N as defined in Definition 15. The set of paths corresponding to

the set C is a path cover of N.

60 Chapter 4 Dynamic cut-point induced path construction method

Proof. Let µp be a computation of an out-port p of the form hT1;T2; : : : ;Tli where,
�T1 � inP, p 2 T �

l , T �
i � PMi , 1 � i < l, where Mi is a marking and Mi+1 = M+

i , the

successor marking of Mi, for all i, 1 � i < l. The sequence µp can be represented as

the sequence hT1; : : : ;Ti1;Ti1+1; : : : ;Ti2; : : : ;Tim; : : : ;Tli, where T �
i j

, 1 � j � m, and T �
l

are all members of C (cut-points) and there are no other transitions in the above se-

quence whose post- places are members of C. Each of the sub-sequences hT1; : : : ;Ti1i,

fhTi j+1; : : : ;Ti j+1i;1 � j < mg and hTim+1; : : : ;Tli are parallelisable paths by Defini-

tion 18; note that whenever the cardinality of the post-place of the last member of

any of the above sub-sequences is greater than 1, the sub-sequence represents a set

of parallelisable paths (having the same cardinality) and is not a single path. Each of

the remaining sub-sequences represents a single path and hence is a singleton set of

parallelisable paths. However, jTlj= 1; hence, the last sub-sequence hTim+1; : : : ;Tli is

a single path (by Definition 13). Hence the above computation µp is a concatenation

of parallelisable paths. If there is no such sub-sequence in µp, i.e., Ti1; : : : ;Tim do not

exist in µp, then µp itself is a single path which is a trivial case of a concatenation of

parallelisable paths.

4.1.3 Equivalence checking using paths – An Example

1 11 1

i+1 i+1 id idid idj+1 j+1

+ +

p p1 1p p2 2

p p3 3p p4 4

p p5 5
p p6 6

p p7 7

t t1 1
t t2 2

t t3 3
t t4 4t t5 5

t t6 6

t t7 7

(a) (b)

i ij j

i ij j

m m

[i*7<=100] [i*7<=100]
[i*7>100] [i*7>100]

[(j+1)*11>100] [(j+1)*11>100]

[(j+1)*11<=100] [(j+1)*11<=100]

(N)0
(N)1

’ ’

’ ’
’ ’

’
’ ’ ’

’

’

’

’

Figure 4.6: Initial and Transformed Behaviour.

Before describing the details of construction of paths, in this section we first

demonstrate through an example the importance of paths in establishing equivalence

4.1 Computation paths of a PRES+ model 61

between two PRES+ models. The fact that a path based equivalence checking strategy

indeed accomplishes the computational equivalence of two PRES+ models is formally

established in the next chapter.

Example 10. Figure 4.6 (a) represents a PRES+ model (N0) of an initial program

which computes d100
7 e+ b

100
11 c. This initial program is transformed using loop swap-

ping transformation whose model N1 is given in Fig. 4.6 (b). Specifically, in Fig.

4.6(a), the fragments ft1g:(ft3g)n:ft4g computes the first term and the fragment ft2g:

(ft6g)m:ft5g computes the second term for suitable values of m and n (n 6= m); corre-

spondingly, in Figure 4.6(b), ft
0

1g:(ft
0

3g)
m:ft

0

4g computes the first term and ft
0

2g:(ft
0

6g)
n:

ft
0

5g computes the second term for the same values of n and m. The set of variables

(common to both models) V = fi; j;mg[fδg. The respective place to variable map-

pings are as follows. f 0
pv(p1) = f 0

pv(p2) = f 1
pv(p

0

1) = f 1
pv(p

0

2) = δ, since p1; p2; p
0

1; p
0

2

are dummy places; f 0
pv(p3) = f 0

pv(p5) = f 1
pv(p

0

4) = f 1
pv(p

0

6) = i; f 0
pv(p4) = f 0

pv(p6) =

f 1
pv(p

0

3) = f 1
pv(p

0

5) = j; f 0
pv(p7) = f 1

pv(p
0

7) = m.

In Figure 4.6 (a), suppose the static cut-points are p1; p2; p3; p4 and p7 and the

dynamic cut-points are p5 and p6; then the paths are α1 = hft1gi;α2 = hft2gi; α3 =

hft3gi;α4 = hft6gi, α5 = hft4gi α6 = hft5gi and α7 = hft7gi. Similarly, in Figure 4.6

(b), suppose p
0

1; p
0

2; p
0

3; p
0

4 and p
0

7 are the cut-points of which p
0

5 and p
0

6 are dynamic

cut-points; then the paths are β1 = hft
0

1gi;β2 = hft
0

2gi;β3 = hft
0

3gi, β4 = hft
0

6gi, β5 =

hft
0

4gi, β6 = hft
0

5gi and β7 = hft
0

7gi.

The condition of execution of the paths of N0 are Rα1(vp1)�Rα2(vp2)�>, Rα3(vp3) :

vp3 �7� 100, Rα4(vp4) : (vp4 +1)�11� 100, Rα5(vp3) : vp3 �7> 100, Rα6(vp4) : (vp4 +

1)�11 > 100 and Rα7(vp5 ;vp6)�> and the corresponding data transformations are

rα1(vp1) = 1, rα2(vp2) = 1, rα3(vp3) = vp3 + 1, rα4(vp4) = vp4 + 1, rα5(vp3) = vp3 ,

rα6(vp4) = vp4 and rα7(vp5;vp6) = vp5 +vp6 . Likewise, in Figure 4.6 (b), the condition

of execution along the paths are Rβ1(vp01
)� Rβ2(vp02

)�>, Rβ3(vp03
) : (vp03

+1)�11�

100, Rβ4(vp04
) : vp04

�7� 100), Rβ5(vp03
) : (vp03

+1)�11 > 100, Rβ6(vp04
) : vp04

�7 > 100,

and Rβ7(vp05
;vp06

) � > and the corresponding data transformations are rβ1(vp01
) = 1,

rβ2(vp02
) = 1, rβ3(v

0

p3
) = vp03

+1, rβ4(vp04
) = vp04

+1, rβ5(vp3) = vp03
, rβ6(vp04

) = vp04
and

rβ7(vp05
;vp06

) = vp05
+ vp06

.

Let fin : inP0 $ inP1 be p1 7! p
0

2 and p2 7! p
0

1 ; let fout : outP0 $ outP1 be p7 7! p
0

7.

For each path of N0, the equivalent path of N1 is obtained by the following steps:

62 Chapter 4 Dynamic cut-point induced path construction method

For the path α1: The path β2 is chosen as the only candidate path for equivalence

with α1 because �α1 2 inP0, �β2 2 inP1 and h�α1;
�β2i 2 fin. As Rα1(fpv(

�α1)) �

Rβ2(fpv(
�β2))�> and rα1(fpv(

�α1)) = rβ2(fpv(
�β2)), it is inferred that α1 ' β2. For

the purpose of equivalence checking, the condition of execution (Rα(fpv(
�α))) and

the data transformation (rα(fpv(
�α))) along the path α are maintained in a normal-

ized form; one such normalized form for integers is given in [20]. Initially, the set

ηt of corresponding transitions is empty and the set ηp of corresponding places is

h�α1;
�β2i. The set ηt is updated next by putting the pair ht1; t

0

2i of last transitions

of α1 and β2 in it; the set ηp is updated to contain the pair fhα�
1;β

�
2ig = fhp3; p

0

4ig

Similarly, it is inferred that α2 ' β1 and ηt is updated to fht1; t
0

2i;ht2; t
0

1ig and ηp =

fhα�
1;β

�
2i;hα

�
2;β

�
1ig= fhp3; p

0

4i;hp4; p
0

3ig.

For the path α3: Since �α3 =2 inP0, a different method is used to select the candidate

paths of α3. First we notice that �α3 = fp3g which is the post-place t�1 of transition

t1. Next, we look for the corresponding transition of t1 in the set ηt; ht1; t
0

2i 2 ηt;

the transition t
0

2 has one post-place, i.e., p
0

4. There are two paths β4 and β6 such

that �β4 = �β6 = fp
0

4g. Hence all these two paths are selected as candidates. How-

ever, since Rβ4(fpv(
�β4)) � Rα3(fpv(

�α3)) and rβ4(fpv(
�β4)) = rα3(fpv(

�α3)), it is

inferred that α3 ' β4 and ηt is updated to fht1; t
0

2i;ht2; t
0

1i;ht3; t
0

6ig and ηp is updated

to fhα�
1;β

�
2i;hα

�
2;β

�
1i;hα

�
3;β

�
4ig Similarly, it is found that α3 ' β4, α4 ' β3, α5 ' β6,

α6 ' β5 and α7 ' β7.

Since each path of the original behaviour has some equivalent path in the trans-

formed behaviour, and vice-versa, with correspondence among transitions of the re-

spective first and the last sets of transitions of the paths, the models are asserted to be

equivalent. It may be noted that the existing control data-flow graph (CDFG) oriented

equivalence checking methods [84], [20], [90],[76] fail to establish the equivalence

between these two programs involving loop swapping. �

4.2 Path construction algorithm

The path construction algorithm starts by initializing the marking at hand Mh to the

set of in-ports and the set Q of paths to empty. A token tracking execution is carried

out from Mh by identifying at each step the enabled transitions Te � M�
h , removing

4.2 Path construction algorithm 63

tokens from �Te � Mh and placing tokens in T �
e . Thus, a new marking at hand Mh

is obtained. If this updated Mh contains a cut-point, then all the places in Mh are

marked as (dynamic) cut-points. As explained earlier, if Mh contains a static cut-point

reached through a back edge and jMhj> 1, then a flag is set to designate that the token

tracking execution has encountered a degenerate case whereupon all the places in the

subsequent markings are to be designated as cut-points; the flag is reset when the post-

transition of Mh is a single transition (designating join of all the parallel threads). Path

construction goes hand-in-hand with dynamic cut-point introduction. Construction of

a path from a cut-point, pc say, involves moving backward from pc through transitions

already traversed till a set of places involving only cut-points is reached. Essentially,

a backward cone of influence is identified from pc in the process. The concurrency

of transitions, however, cannot be identified by backward traversal. So, the algorithm

keeps track of the concurrent transitions encountered during forward execution as a

sequence of sets of concurrent transitions, designated as Tsh. To start with, Tsh is

empty. At each step, Te contains the concurrent transitions enabled for the marking

Mh and is appended at the end of Tsh. While constructing paths from pc, the cone of

influence of pc is revealed by moving backward along Tsh.

An intricacy arises because the forward token tracking execution does not progress

linearly; whenever a place in Mh has more than one post-transition, alternative sets of

concurrent transitions (guided by proper guards) result. To keep track of these alterna-

tives, the set of all the bound transitions for Mh is partitioned into subsets of maximally

parallelisable transitions having disjoint pre-places. The Cartesian product set of these

subsets yields the subsets of enabled concurrent transitions. For each of these subsets,

the forward progress of execution is pursued in a DFS manner. The following function

modules are involved in path construction. The functional modules are depicted in Al-

gorithms 3 � 6 with Algorithm 3 being the top level module. The call graph of the

path construction algorithm is given in Figure 4.7. The following example illustrates

how the path construction algorithm constructs the paths in a PRES+ model.2

Example 11. In Figure 4.2, the static cut-points are p1; p2; p3; p6; p10 and p13. When

Mh is fp1; p4; p5; p6g, p4 and p5 are marked as dynamic cut-points as p1 and p6 are

cut-points. The function obtainAllThePaths calls constOnePathDCP twice

2Note that two of the four function module names contain the string DCP to indicate the context of

“dynamic” cut-point based path construction mechanism; this would distinguish them from the static

cut-point based path construction mechanism presented in Chapter 6.

64 Chapter 4 Dynamic cut-point induced path construction method

constAllPathsDCP

constOnePathDCP

obtainAllThePaths

compAllSetsOfConcurTrans

Figure 4.7: Call graph of path construction algorithm

� first with p4 and next with p5 as parameters. The function constructs two paths,

namely, α1 = hft1gi and α2 = hft2gi using backward traversal and the cone of in-

fluence method. In the next step of token tracking execution, Mh becomes fp7; p8g

and neither of these is marked as a dynamic cut-point. The next Mh is fp9; p10g

and as p10 is a cut-point which contains a back edge and jMhj = 2, the degen-

erate flag is set to true and p9 is marked as a dynamic cut-point. The function

obtainAllThePaths calls constOnePathDCP twice � one with p9 and then

with p10 whereupon, the latter constructs two paths, namely, α3 = hft3g;ft5gi and

α4 = hft4g;ft6gi, using backward traversal and cone of influence method. Then, the

function obtainAllThePaths calls compAllSetsOfConcurTrans function

and returns the set T = fft7; t8g;ft7; t9gg of all possible mutually exclusive sets of

concurrent transitions. Each of the sets is processed in a DFS manner. For the set

ft7; t8g, Mh becomes fp11; p12g and as p11 is a cut-point, p12 is also marked as a dy-

namic cut-point. As p�11 = p�12 = t10, at this point the token tracking execution ceases

to exist in the degenerate case and the two paths α5 = hft7gi and α7 = hft8gi are con-

structed. Similarly, in the next step, Mh becomes fp13g and as p13 is a cut-point, by

backward traversal and cone of influence method, a path α8 = hft10gi is constructed.

For the set ft7; t9g, the function obtainAllThePaths updates Mh. When Mh =

fp10; p11g; as p10 is a cut-point, p11 is attempted to be designated as dynamic cut-

point. However, p11 has already been designated as dynamic cut-point. So, the func-

tion obtainAllThePaths calls constOnePathDCP only once with p10 which

constructs the α6 = hft9gi using backward traversal and cone of influence method.

Therefore, the set of dynamic cut-points is computed as fp4; p5; p9; p11; p12g and the

path set as fhft1gi;hft2gi, hft3g;ft5gi, hft4g;ft6gi; hft7gi;hft9gi, hft8gi;hft10gig. �

4.2 Path construction algorithm 65

The above algorithm is now analyzed for termination, complexity, soundness and

completeness in the following subsections.

4.2.1 Termination of the path construction algorithm

Theorem 3. constAllPathsDCP function (Algorithm 3) always terminates.

Proof. This result is a consequence of the following lemmas.

Lemma 1. constOnePathDCP function (Algorithm 6) always terminates.

Proof. The function terminates if it invokes itself (in step 8) a finite number of times.

In every invocation, in step 2, Tsh is updated by reducing its length. Let jT (i)
sh j be the

size of Tsh at the ith invocation. Then, jT (0)
sh j > jT (1)

sh j : : : jT (i)
sh j > jT (i+1)

sh j > :: :, is a

strictly decreasing sequence bounded by zero. In other words, fjT (i)
sh j; i� 0g � N and

(N;<) is a well-ordered set [95]. Hence, constOnePathDCP invokes itself finitely

many times.

Lemma 2. compAllSetsOfConcurTrans function (Algorithm 4) always termi-

nates.

Proof. There are two loops; the first one comprising steps 1-3 and the second one

comprising step 4. The first one terminates as the size of Mh is finite. The output of

this step is a finite collection of sets Tp’s each of which is finite. Hence, step 4, which

computes the Cartesian product set of these Tp’s, also terminates.

Lemma 3. The function obtainAllThePaths (Algorithm 5) is invoked by itself

only a finite number of times.

Proof. There are three loops in the function obtainAllThePaths; the first one com-

prises step 5; the second one comprises steps 17-25 and the third one comprises steps

31-34; all of them execute finitely many times. The first loop in step 5 is executed

O(jT j) times. The second loop in step 17 is executed O(jPj) times, since Mh is O(jPj).

Within the loop there is an invocation of the recursive function constOnePathDCP.

This function always terminates as given in Lemma 1. Step 27 terminates by Lemma

66 Chapter 4 Dynamic cut-point induced path construction method

2. Step 32 in the else-clause of step 28 involves as many recursive invocations of the

function obtainAllThePaths as the members of T . There are only finitely many in-

vocations for each member of T as explained below. In the first invocation, jTshj � jT j

as Tsh does not contain any transition more than once. Step 6 expands Tsh by append-

ing Te. Hence, in every recursive invocation, the difference between the transition

set T and the set Tsh is reduced, i.e., jT j � jT (0)
sh j > jT j � jT (1)

sh j > :: : jT j � jT (i)
sh j >

:: :, where T (i)
sh is the value of the parameter Tsh at the ith recursive invocation. So,

fjT j� jT (i)
sh j; i� 0g � N and (N;<) a well-ordered set [95]. Thus, the loop in step 31

terminates.

The proof of Theorem 3 can now be accomplished as follows. There is a single

loop in step 3. The loop step 3 executes finitely many times because the sets of all

concurrent transitions (T) is finite as it is generated by the function

compAllSetsOfConcurTrans which terminates as given in Lemma 2. Within the

loop, the function calls the function obtainAllThePaths which always terminates as

given in Lemma 3.

Algorithm 3 SETOFPATHS constAllPathsDCP (PRES+ N)
Inputs: A PRES+ model N
Outputs: Set of all paths Q
1: Mh(inP; /* Place � marking at hand � initialized to in-ports*/

Q(/0; /* set of all paths � initially empty */
Tsh(hi; /* Transition sequence at hand � initially empty */ degenerate = false;

2: T = compAllSetsOfConcurTrans (Mh;N);
/* it takes Mh and forms all possible sets of concurrent transitions that are bound to Mh */

3: 8T 2 T
Q(Q

S
obtainAllThePaths (Tsh;Mh;T;N);

/* The function returns the set of paths corresponding to the set of cut-points in the model N*/
4: return Q;

Algorithm 4 CONCURRENTTRSET* compAllSetsOfConcurTrans (Mh;N)
Inputs: The first parameter is a marking. The second parameter is the PRES+ model N.
Outputs: The function returns all possible sets of concurrent transitions from M�

h .

1: for each p 2Mh do
2: Tp = fp� j �(p�)2Mh}; /* a transition of p� is included in Tp only if all its pre-places are marked

*/
3: end for
4: T =�p2MhTp; /* Cartesian product sets of Tp, p 2Mh and members of T are generated as ordered

tuples but treated as unordered sets */
5: return T ;

4.2 Path construction algorithm 67

Algorithm 5 SETOFPATHS obtainAllThePaths (Tsh;Mh;Te, degenerate, N)
Inputs: The first parameter is sequence Tsh of sets of concurrent transitions. The second parameter
is a marking Mh. The third parameter is a set Te of enabled maximally parallelisable transitions. The
fourth parameter degenerate is a flag value. The fifth parameter is the PRES+ model N.
Outputs: The function returns the set of paths corresponding to the set of cut-points in the model N.

1: SETOFPATHS Q = /0; degenerate = false;
2: if Te == /0 then
3: return Q;
4: end if
5: 8t 2 Te, mark t;
6: Tsh(Tsh:Te; /* modify Tsh by appending Te */
7: Mnew(T �

e ; /* post-places of Te acquire tokens */
8: Mh((Mh�

�Te)[Mnew; /* modify Mh by deleting the pre-places of the concurrent transitions and
adding their post-places */

9: if (jM�
h j � 1 and degenerate = true) then

10: degenerate = false;
11: end if
12: if (there exists a back edge leading to some p in Mh and jMhj> 1) then
13: degenerate = true;
14: end if
15: if (degenerate = true or at least one p in Mh is a cut-points or jT �

e j> jTej) then
16: mark each place in Mh and all places in T �

e as a dynamic cut-point if it is not already a cut-point;
17: for each p0 2Mh do
18: α = constOnePathDCP (fp0g;Tsh;N); /* Traverse backward from fpg along Tsh to construct

a path up to some cut-points */
19: Q(Q[fαg; /* Update Q and α is a path to all the out-places of �p0 � so delete the out-places

of �p0 to avoid repetition of effort (Steps 14, 15) */
20: Let S = fp00 j �p0 = �p00 };
21: Mh = Mh�S;
22: if (j(p)�j = 0) _ (all transitions of (p0)� are marked) /* first disjunct means p0 is an out-port

*/ then
23: Mh (Mh�fp0g; /* (p0)� have already occurred in some path � this step prevents them

from appearing in the subsequent set of enabled concurrent transitions */
24: end if
25: end for
26: end if
27: T = compAllSetsOfConcurTrans (Mh;N);

/* unmark all the marked transitions */
28: if (T = /0) and (Mh 6= /0) then
29: Report as invalid PRES+ Model
30: else
31: for each Te 2 T do
32: Q(Q[obtainAllThePaths (Tsh;Mh;Te, degenerate, N) //call itself recursively;
33: return Q;
34: end for
35: end if

68 Chapter 4 Dynamic cut-point induced path construction method

Algorithm 6 PATH constOnePathDCP (P;Tsh;N)
Inputs: The first parameter is a set P of places. The second parameter is a sequence Tsh of sets of
concurrent transitions. The third parameter is the PRES+ model N.
Outputs: The function returns a path α.

1: T = last(Tsh)\
�P;

/*T is earmarked. The remaining ones in last(Tsh), if any, do not fall in the cone of influence of P
*/

2: T
0

sh = Tsh�last(Tsh); /* Ignore last(Tsh) altogether in further backward traversal */
3: P0 = (P�T �)[�T ;
4: P0 = P0�Pc, where Pc is the set of all cut-points;

/* proceed backward only from the places which are not cut-points */
5: if P0 = /0 then
6: return (PATH) hT i;
7: else
8: return append(constOnePathSCP(P0;T

0

sh;N);T);
/* append T at the end of the sequence obtained by continuing backward */

9: end if

4.2.2 Complexity analysis of the path construction algorithm

In this subsection, we discuss the complexities of the modules used by the path con-

struction algorithm in a bottom up manner. We show that the complexity of the overall

algorithm is O
�� jT j

jPj

�jPj
jT j2

�
which reduces further to O

�
jT j2

�
.

Complexity of Algorithm 6 constOnePathDCP: The set intersection operation

in step 1 involves searching for each member of �P in last(Tsh). We keep the pre-

transitions of all the places and all the members of Tsh, and hence last(Tsh), sorted

in the indices of the model transitions such that binary search can be used for each

member of �P. Hence, it takes O(jT j log jT j) time. In step 2, Tsh is updated by dele-

tion of the last member of Tsh from Tsh. As we use a stack for Tsh, the pop operation

achieves this deletion step in O(1) time. In step 3, the set difference and union op-

erations (between sets of places) take place. These operations are done by binary

search technique of one operand for each member of the other operand; hence it takes

O(jPj log jPj) time. In step 4, the set difference operation takes O(jPj log jPj) time.

Step 5 checks whether the set of places is an empty set or not in O(1) time. If the

set of places is empty, then the function returns hT i in O(1) time. If the condition is

not true, then the recursive invocation takes place at step 8 and it takes O(jT j) time.

Since jTshj= jT j in the worst case because each transition can occur at most once, the

overall complexity of this function is O(max(jT j log jT j; jPj log jPj) jT j).

4.2 Path construction algorithm 69

Complexity of Algorithm 4 compAllSetsOfConcurTrans: Step 1 produces

O(jPj) number of Tp’s, as the set Mh has size O(jPj). Each Tp has O
�
jT j
jPj

�
transi-

tions because Tp’s are disjoint. In step 4, the product set of Tp’s is computed which

takes O
��

jT j
jPj

�jPj�
time.

Complexity of Algorithm 5 obtainAllThePaths: Step 1 initializes the set Q

of paths to empty set; hence the complexity is O(1). Steps 2-4 take O(1) time to

check whether Te is empty. Step 5 marks all the transitions in Te in O(jT j) time. In

step 6, Tsh is updated by appending the set Te of enabled transitions at its end. As

Tsh is maintained as a stack, the appending (push) operation has the complexity O(1).

In step 7, it obtains the post-places of the enabled transitions Te; for each transition

t, t� takes O(1) and there can be O(jT j) transitions in Te; hence the complexity is

O(jT j:jPj). In step 8, the computation of �Te takes O(jPj) time, computation of Mh�
�

Te takes O(jPj log jPj) time, computation of union operation also takes O(jPj log jPj)

time as Mh is in sorted order and the union and set difference operations are done by

binary search. Steps 9 and 10 take O(1) time. Step 12 takes O(jPj) time. In step 18,

the function calls constOnePathDCP routine which returns a path as a sequence of

sets of transitions as output in O((max(jT j log jT j; jPj log jPj) jT j)) time as explained

previously. In step 19, it adds the new path α returned by constOnePathDCP to the

set Q of all paths by union operation; since Q is maintained as an unordered set and

it is ensured through steps 20 and 21 that no path is generated more than once, step

19 takes O(jPj) time. Step 20 takes O(jPj) time. Step 21 takes O
�
jPj2

�
because for

each member of S, where jSj= O(jPj), all the members of Mnew (of size O(jPj)) have

to be examined. Step 22 detects the condition j(p0)�j = 0 in O(1) time; detecting

whether all the transitions of (p0)� are marked or not, can be found in O(jT j) time

since j(p0)�j is O(jT j). The operation Mnew = Mnew�fp0g takes O(1) time because

p0 is a distinguished member of Mh in each iteration of the loop involved in step 17. So

the time complexity of the body (steps 18�24) of the loop comprising steps 17�25

is the maximum of the time complexities of steps 18 to 24, i.e., O
�
jPj2

�
time; the loop

comprising steps 17-25 iterates O(jPj) time; hence, the overall complexity is O
�
jPj3

�
time. Therefore, the total complexity of the then block of step 15 is O

�
jPj3

�
time.

Step 27 computes the set of all concurrent transitions, which takes O
��

jT j
jPj

�jPj�
as

explained previously. In the same step, the function unmarks all the marked transitions

and it takes O(jT j) time. Step 28 checks whether the computed set of concurrent

transitions is empty and Mh is non-empty; it takes O(1) time. If the condition is

70 Chapter 4 Dynamic cut-point induced path construction method

true, the algorithm reports that the given model is an invalid PRES+ model. If the

condition is false, the function calls obtainAllThePaths recursively O(jT j) times as

the loop in this step iterates O(jT j) time; hence the overall complexity of this step is

O
���

jT j
jPj

�jPj�
jT j

�
.

Complexity of Algorithm 3 constAllPathsDCP: Step 1 initializes Mh;Q and

Tsh. For creation of Mh, the function takes O(jPj) time and for initialization of the

other two entities, the function takes O(1) time. Hence, the overall time complexity of

this step is O(jPj). In step 2, the function calls compAllSetsOfConcurTrans which

takes O
��

jT j
jPj

�jPj�
time as indicated above. In the same step, the function unmarks

all the marked transitions and it takes O(jT j) time. In step 3, for all transitions which

are in some concurrent set of transitions obtained in step 2, the function updates Q

by calling obtainAllThePaths whose complexity is O
��

jT j
jPj

�jPj
jT j

�
. The forward

progress takes O(jT j) time.

However, at each step, compAllSetsOfConcurTrans needs to be invoked which

results in this figure. Since the loop of step 3 iterates O(jT j) time, the overall com-

plexity is O
��

jT j
jPj

�jPj
jT j2

�
. Therefore, the overall complexity of the path construc-

tion algorithm is O
��

jT j
jPj

�jPj
jT j2

�
. In a computation, the number of definitions for

a variable is less than the number of its use. Hence the number jT j of transitions is

less than the number jPj of places, that is, jT j
jPj < 1. (An ill-written program can violate

this property by having definitions which are never used. During model construction,

however, they will result in places which are not out-ports but have no post transitions;

such places can be removed.) So, the complexity figure O
��

jT j
jPj

�jPj
jT j2

�
is O

�
jT j2

�
.

4.2.3 Soundness of the path construction algorithm

Theorem 4. Any member of the set Q returned by the function constAllPathsDCP

satisfies the properties of the paths (as given in Definition 13).

Proof. Let there be a path α = hT1;T2; : : : ;Tni in the set Q returned by the function

constAllPathsDCP which does not satisfy all the properties of a path as listed in the

definition (Definition 13) of paths. (The fact that any member of Q has such a form

4.2 Path construction algorithm 71

(as that of α) is obvious from step 18 of obtainAllThePaths function and steps 1, 6

and 8 of the function constOnePathDCP which ensure that the path α obtained com-

prises only a sequence of sets of parallel transitions.) Depending on which property it

violates, we have the following cases:

Case 1: There exists some member Ti, 1 � i � n, such that Ti is not parallelisable.

The function constOnePathDCP appends Ti in step 8 or step 6 in each invoca-

tion. Each Ti is ensured to be a subset of some member T , say, of Tsh which

is ensured through step 1 of the function constOnePathDCP. So, the member

T of Tsh is not parallelisable. Now, the member T has been appended at the

end of Tsh in step 6 of the function obtainAllThePaths. Each T is ensured

to be a member of T by step 31 of the previous invocation of the function

obtainAllThePaths. But all members of T are ensured to be parallelisable by

the function compAllSetsOfConcurTrans invoked in step 27. Hence, T must

be parallelisable. So, Ti must be parallelisable.

Case 2: None of the members in �T1 is a cut-points. The path α has been constructed

through n invocations of the function constOnePathDCP; the first n� 1 invo-

cations have put the transition sets Tn;Tn�1; : : : ;T2 in step 8; the nth invocation

returns a path comprising a sequence hT1i of length 1 in step 6. So, in this in-

vocation, P0 is found to be empty in step 5, i.e., after step 4. After step 3 of the

kth invocation, P0 contains all the pre-places of �T1: Prior to step 4 P0 must have

been Pc. Therefore, �T1 = Pc.

Case 3: There exists at least one place in T �
n which is not a cut-point. The transition

in Tn being the last transition in the path, it must have been appended at the end

by the function constOnePathDCP in step 8 of its first invocation. It has been

computed in step 1 of this invocation. Let P1;Tsh1 be the first two arguments

with which this invocation has taken place. So from step 1, Tn = last(Tsh1)\
�P1

which implies T �
n � P1. Now, the first invocation of constOnePathDCP takes

place from step 18 of the function obtainAllThePaths with P1 = fp0g where

p0 is (made) a cut-point in step 16. So T �
n is a cut-point.

Case 4: For some m;1 � m < n, there exists at least one member Tm, say, in α such

that T �
m contains a cut-point. In this case, step 16 in obtainAllThePaths func-

tion would ensure that all the places in T �
m are cut-points. Step 18 should have

invoked constOnePathDCP for each member of T �
m resulting in jT �

mj paths of

72 Chapter 4 Dynamic cut-point induced path construction method

the form hT1;T2; : : : ;Tm;ii, 1 � i � jT �
mj, where Tm;i is a transition of Tn. So the

algorithm could not have returned α with Tm as its intermediate member.

Case 5: The condition 8i, 1 < i � n; 8p 2 �Ti, if p is not a cut-point, then 9l, 1 �

l � i�1, p 2 T �
i�l does not hold, i.e., there exists a set of concurrent transitions

Ti in the path which has at least one pre-place p which is not a cut-point but

is not included as a post place of any of the preceding sets T1 through Ti�1.

Let Ti be the last such transition in the path with such a pre-place p. Now

constOnePathDCP is invoked first time from step 18 of obtainAllThePaths

with the first parameter P = fpcg, i.e., P containing a single cut-point. There

is a recursive invocation of constructOnepath subsequently when Ti has been

earmarked for inclusion in the path with the first parameter P0 containing p 2
�Ti (due to the union terms in step 3). All the subsequent invocations of

constOnePathDCP will have p in P0 because of the following reasons.

1. They are not cut-points (due to step 4), and

2. They are not in T � (due to step 3), where T =last(Tsh)\
�P.

Since p satisfies both (1) and (2), all the recursive invocations have P0 contain-

ing p (computed in step 8). Since, as per the premise, p =2 T �
1 [T �

2 [: : :[T �
i�1,

the process would have gone (backward) beyond T1 and α could not have T1 as

its first member.

Case 6: There exist two transitions ti 2 Ti and t j 2 Tj, 1� i 6= j� n, in α such that �ti\
�t j 6= /0. Let p 2 �ti \ �t j. Hence, the function obtainAllThePaths constructs

Mh containing p, in step 8 in some invocation. The compAllSetsOfConcurTrans

is invoked from step 27 of this function with this Mh and it returns a set T of

sets of concurrent transitions containing two distinct sets Ti and Tj such that ti 2

Ti�Tj and t j 2 Tj�Ti. The steps 31 and 32 of the function obtainAllThePaths

will proceed in a depth-first manner first with one of Ti and Tj till a path is con-

structed with Ti (or Tj) as one of the alternatives. Therefore, two paths are

constructed one containing Ti and other Tj. Hence, ti and t j cannot occur in the

same path α.

Case 7: 9i;1 � i � n;Ti is not maximally parallelisable within the path α. Let there

exist T 0� Ti such that T 0 is parallelisable. Ti has been put in α in the (n� i+1)th

invocation of the function constOnePathDCP. In step 1 of this invocation, Ti

has been defined as last(Tsh)\
�P. Since T 0 � Ti;T 0 * last(Tsh) or * �P. If

4.2 Path construction algorithm 73

T 0 * last(Tsh), then T 0 is not a parallelisable set (because the set Tsh is con-

structed by token tracking execution which ensures that Tsh has only maximally

parallelisable transitions). If T 0 * �P, then T 0 is not maximally parallelisable

within the path α because it is not within the cone of foci (influence) from T �
n .

Case 8: No computation (of any out-port) has a sub-sequence of markings of places

hPMi;PMi+1 , : : :PMi+ni such that all clauses (vii)(a)–(vii)(c) are satisfied. It may

be noted that the ith recursive invocation of constOnePathDCPwhich puts Tn�i�1;

1 � i � n, into the path, satisfies through step 1 that Tn�i�1 2last(Tshi), where

Tshi is the value of Tsh with which ith invocation takes place. Tsh is constructed in

step 6 of the function obtainAllThePaths by adding Te where �Te is a mark-

ing obtained by the token tracking execution (steps 7-16 and 27-33) which, in

turn, ensures that these markings are obtained as successor markings of a com-

putation. Hence there indeed exists a computation which has the desired sub-

sequence depicted in clause (vii).

Case 9: 9i;1 � i < n such that jT �
i j > jTij. In this case, the step 16 of the function

obtainAllThePaths ensures that T �
i are all cut-points. Therefore, the path

could not have contained the sets Ti+1 to Tn.

4.2.4 Completeness of the path construction algorithm

Theorem 5. The set of paths returned by the function constAllPathsDCP is a

path cover of the model.

Proof. Let µp be a computation of some out-port p, which is not covered by the

set of paths returned by the path construction algorithm. From Theorem 2, µp must

be of the form hT1; : : : ;Tk1;Tk1+1; : : : ;Tk2 ; : : : ;Tkr ; : : : ;Tl�1;Tli such that all the places

in T �
ki

, 1 � i � r, are cut-points and no other intermediary marking has any cut-

point. Proof of Theorem 2 also established that each of the sub-sequences µs1 =

hT1; : : : ;Tk1i; : : : ;µsr+1 = hTkr ; : : : ;Tli results in a a set of parallelisable paths by defini-

tion of paths so that µp can be represented as a concatenation ((α1;1 kα1;2 k : : : kα1;k01
).

(α2;1 k α2;2 k : : : k α2;k02
). : : : k αr+1;1) of parallelisable paths, where k

0

1 = jTk1j,

74 Chapter 4 Dynamic cut-point induced path construction method

k
0

2 = jTk2 j and so on. Let α j;i for some i , 1 � i � k
0

j, which is a path in the jth

group in the above concatenation, be not constructed by the path construction algo-

rithm. As α�
j;i 2 T �

k j
are cut-points, step 18 of obtainAllThePaths function must call

constOnePathDCP with P = fpg, where p 2 α�
j;i and the function returns the path

α j;i. Hence there does not exist any path of µp which is not constructed by the path

construction algorithm.

4.3 Experimental Results

The algorithm is implemented in C and tested on both sequential and parallel exam-

ples on a 2.0 GHz Intel(R) Core(TM)2 Duo CPU machine (using only a single core).

We have carried out the experimentation along two courses. The first one has used

hand constructed models because initially, we did not have any automated model con-

structor at our disposal; this set up has been depicted in Figure 4.8. The second course

of experimentation has been carried out using an automated model constructor which

has been completed subsequently (and described in [122]); this flow has been depicted

in Figure 4.9. Note that in this second course, the inputs have been taken as FSMD

models rather than the C codes of the programs. The automated model constructor

had to be enhanced with a pre-processing utility to construct C code corresponding

to an FSMD model; the process has also been described in [122]. This has been

done for providing a common set of inputs for comparing the performance of the two

PRES+ model based equivalence checking methods described in this dissertation with

the FSMD based equivalence checking reported in [20]. The same set of examples

are used for testing the path construction modules and the equivalence checking mod-

ules of the two PRES+ model based equivalence checking approaches. In the present

chapter, we describe only our experimentation with the path constructor module of

the first approach where we primarily observe the number of paths and the time taken

to construct them. In Chapter 5, the experimentation with the corresponding equiv-

alence checking module is presented. In the following subsection, we discuss these

two courses of experimentation in detail.

4.3 Experimental Results 75

source
prog

compiler

Manual triming

Trimmed

prog

of model
Path constructor Path equivalence

Equivalence checker

Equivalence

Testing

(Formal)

of model

PRES+
Trans

PRES+
source

Hand construction

Hand construction

Yes

No

(3 address)

prog
Trans

Yes

No

Figure 4.8: Experimentation using hand constructed models

PRES+ 2

FSMD1

FSMD2

FSMD

to

to

Prog

FSMD

Prog

Prog1

Prog2

Automated

PRES+
model

Automated
PRES+
model

constructor

constructor

PRES+ 1

constructor

Path Path

equiv

yes

no

Figure 4.9: Experimentation using automated model constructor

4.3.1 Experimentation using hand constructed models

The steps for carrying out the experimentation are described stepwise, first for sequen-

tial and then for parallel transformations.

1. Preparation of the example suite: The list of source programs used for the

experimentation and their functionalities are as follows:

(a) MODN: Calculates (a�b) modulo n, where a;b < n.

(b) SUMOFDIGITS: Carries out repetitive summation of digits of the input

number and of the number obtained in each iteration until the sum becomes

a single digit; e.g., for the input number 12345, the iterations are to yield

76 Chapter 4 Dynamic cut-point induced path construction method

Example Transformations

MODN Uniform and non-uniform code motion, code motion across loop (human guided)

SUMOFDIGITS Dynamic loop scheduling (DLS) (human guided)

PERFECT DLS, uniform and non-uniform code motion, code motion across loop

PRIMEFACS DLS, Uniform and non-uniform code motion (SPARK), code motion across loop

GCD Uniform and non-uniform code motion (SPARK), code motion across loop

TLC Uniform and non-uniform code motion (SPARK), code motion across loop

DCT Uniform and non-uniform code motion (SPARK), code motion across loop

LRU Uniform and non-uniform code motion (SPARK), code motion across loop

LCM Uniform and non-uniform code motion (SPARK), code motion across loop

MINANDMAX-S Loop swapping (human guided)

Table 4.1: Experimentation with sequential transformations.

the sequence 12345! 15! 6. A recursive definition is as follows:

sodTill1dig(n) = n; i f n < 10;

= sodTill1dig(sod(n)); i f n� 10

where; sod(n) = n; i f n < 10

= sod(n=10)+n%10; i f n� 10:

(c) PERFECT: Checks whether the input number is perfect or not.

(d) GCD: Calculates the GCD of two input numbers.

(e) TLC: Traffic light controller for a highway - farmroad crossing.

(f) DCT: Computes the four point discrete cosine transform.

(g) LCM: Calculates the LCM of two input numbers.

(h) LRU: Identifies the least-recently used item in a cache.

(i) PRIMEFACS: Sum of all the prime factors of the input number.

(j) MINANDMAX-S: Computes sum of the maximum of four numbers n1;n2,

n3;n4 and the minimum of the four numbers n1;n5, n6 and n7 (having n1

as the common element). This functionality has been chosen so that the

corresponding PRES+ models (for both source and transformed programs)

force degenerate phases to be encountered during path construction.

4.3 Experimental Results 77

It is to be noted that some of these examples, such as GCD and TLC, are control

intensive; some are data intensive, such as DCT, whereas some are both control

and data intensive, such as LRU.

2. Transforming the programs: Each of the above sequential programs is then

transformed using some human guided transformations or by the SPARK com-

piler. In Table 4.1, depicts the transformations that are applied for each of the

above ten examples. It is to be noted that for testing our path construction mod-

ule, we, therefore, have ten pairs of source and transformed programs.

3. Trimming of the transformed program: Since for both source and trans-

formed programs the models have been constructed manually, the sizes of the

programs are of importance. The transformed programs had many redundant

temporary variables (due to three address code produced by the compiler); so the

transformed programs are trimmed manually by removing such temporary vari-

ables. To alleviate human errors, the source C code and the manually trimmed

version of the transformed code of each of the ten example problems are com-

piled using GCC and run on some test cases (as shown in Figure 4.8).

4. Manual construction of models: From both source program and the trimmed

version of the transformed program, we construct two PRES+ models manually

using human ingenuity extensively. To guard against human errors, each of

these models is tested using the CPN simulator [70].

5. Path Construction: Finally, we feed these two PRES+ models as inputs to our

path constructor module which is the front end of the equivalence checker.

6. Reporting of results: For each test case, we observe the numbers of static

cut-points (SCPs) and dynamic cut-points (DCPs), the number of times the de-

generate phase is encountered and the number of paths produced. For small

examples like MODN, GCD, SUMOFDIGITS, PERFECT, DCT, PRIMEFACS

and LCM, the paths produced are manually checked for correctness. The source

and transformed codes for all examples and their corresponding PRES+ models

which are depicted in Table 4.2 are given in AppendixA.

Example 12. In this example, we describe the above experimental steps using the

example MODN. The source and the trimmed versions of the transformed C code for

the example is given in Figures 4.10 and 4.12. The source C program is transformed

78 Chapter 4 Dynamic cut-point induced path construction method

by the SPARK compiler; the output of the SPARK compiler is given in Figure A.1 in

the appendix. Using a human guided trimming procedure, as indicated in Figure A.1,

we have got the trimmed version of the transformed program which is given in Figure

4.12. The source and trimmed programs are then compiled using the GCC compiler

and tested on some test inputs. If the test input is n = 7;a = 5;b = 6, then the outputs

of both the programs are 2. The PRES+ models constructed manually for these two

programs are given in Figures 4.11 and 4.13. The models are then validated using

CPN simulator for the same data set. Then we have fed these two examples one by

one as inputs to our path constructor module. For each of them, our path construction

module gives the list of static and dynamic cut-points, indicates entries to and exit

from the degenerate phase and then finally prints the set of paths. Our tool also gives

the path construction time. For calculating time, we have used get_cpu_time().

A typical program output for the source MODN is given in Figure 4.14. �

main() {
int s, i, n, a, b, sout;
s = 0;
for (i = 0; i <= 15; i++) {

if (b % 2 == 1)
s = s + a;

if (s >= n)
s = s - n;

a = a * 2;
b = b / 2;
if (a >= n)

a = a - n;
}
sout = s;

}

Figure 4.10: Source program of MODN

Table 4.2 depicts the sizes of the original and the transformed PRES+ models in

terms of numbers of their places, transitions (trans), static (SCP) and dynamic cut-

points (DCP), degenerate cases (DC) and paths. Last two columns depict the path

construction time for both original and transformed PRES+ models.

Experimentation with parallelizing transformations

In this step, we have transformed five sequential programs into parallel programs using

two prominent thread level parallelizing compilers PLuTo [24] and Par4All [2]. The

experimental set up is as follows:

4.3 Experimental Results 79

1. Preparation of the example suite: We have taken five sequential source pro-

grams. The list of the source programs and their functionalities are as follows:

(a) BCM [82]: A toy example on basic code motion without writable shared

variables which illustrates computational vs. executional optimality.

(b) MINANDMAX-P: The same MINANDMAX-S program used in the se-

quential example suites.

(c) LUP: It computes “LU Decomposition with Pivoting”. In this experimen-

tation, we have only taken the pivoting routine which does not contain any

array. The detailed functionality of this source program is given in PLuTo

example suite [14, 24].

(d) DEKKER’s and PATTERSON’s algorithms: Implementations of the clas-

sical solutions to the mutual exclusion problem of two concurrent pro-

cesses. Since our mechanism does not handle writable shared variables

among parallel threads, we have considered a single process in each of

these cases; also we have introduced a series of dummy assignment state-

ments within the critical section which was otherwise left unspecified in

the code. Unlike the previous cases, for these two examples, the corre-

sponding PRES+ models have been taken directly from [9, 119].

2. Transforming the programs: The above five sequential programs are trans-

formed by two prominent thread level parallelizing compilers, PLuTo [24] and

Par4All; the transformed versions accordingly have parallel structures. Table

4.3 depicts the type of transformations applied for each of the above examples.

It is to be noted that for testing our path construction module, (in the context of

parallelizing transformations) we have five sequential programs and two sets of

five parallel programs� one obtained using PLuTo compiler and the other using

Par4All compiler. Before submitting the sequential programs to these compilers

for parallelization, the scope in the source program is designated manually us-

ing pragma scop such that the compiler transforms only that particular portion

of the code.

3. Selecting portion of the source and the transformed programs: To contain

the size of the hand constructed models, we have taken only those portions of

the codes which are transformed by the compilers. The variables which are only

used within the scope are the in-ports of the PRES+ model.

80 Chapter 4 Dynamic cut-point induced path construction method

4. We construct two PRES+ models by hand–one from the original code snippet(s)

present in pragma scope of the original program and the other from the code

snippet(s) present in CLooG scop of the transformed program. All the above

parallel examples do not contain any writable shared variables. To guard against

human errors, each of these models is checked for validity using the CPN tool

[70]. Finally, we feed these two PRES+ models as (two independent) inputs to

our path constructor module which is the front end of the equivalence checker

and observe the same set of parameters as described for Table 4.2.

Example Original PRES+ Transformed PRES+ Time (µs)

Place Trans SCP DCP DC Paths Place Trans SCP DCP DC Path Original Transf

MODN 28 21 17 8 1 17 27 20 16 10 1 17 5532 4834

SUMOFDIGITS 11 9 8 2 1 9 10 9 6 4 1 9 1051 1168

PERFECT 19 14 12 6 2 13 14 10 11 3 2 9 2929 1679

GCD 31 27 14 14 1 16 19 17 12 5 1 15 6561 3240

TLC 30 28 16 12 0 23 40 39 16 14 0 23 7355 8532

DCT 25 18 6 0 0 1 20 13 6 0 0 1 796 785

LCM 34 28 14 14 1 16 22 18 12 5 1 15 6693 3825

LRU 39 37 18 16 2 18 45 42 20 17 2 18 6345 6783

PRIMEFACS 12 10 7 5 1 10 12 10 8 4 1 10 1065 1217

MINANDMAX-S 28 21 11 16 1 21 28 21 11 16 1 21 6234 6225

Table 4.2: DCP induced path construction times for hand constructed models of se-

quential examples

Example Transformations

BCM Boosting up code motion for parallel threads

MINANDMAX-P Thread level parallelization

LUP Thread level parallelization

DEKKER Thread level parallelization

PATTERSON Thread level parallelization

Table 4.3: Transformations carried out using parallelizing compilers

4.3 Experimental Results 81

 p1 : variable := s

t1

expression := s=i

 p2 : variable := i

t2

expression := i=0

 p3 : variable := a

t3

expression := a=i

 p4 : variable := b

t4

expression := b=i

 p5 : variable := n

t5

expression := n=i

 p6 : variable := s

t9

expression := s=s

t10

expression := k=s+a

condition := k==1

 p7 : variable := s

t7

expression := s=s

condition := i>15

 p8 : variable := i

t6

expression := s=s

condition := i<=15

 p9 : variable := i

t20

expression := i=i+1

 p10 : variable := a p11 : variable := a

t15

expression := a=a/2

 p12 : variable := b

t8

expression := k=b

 p13 : variable := b

t14

expression := b=b/2

 p14 : variable := n

t11

expression := s=s-n

condition := s>=n

t12

expression := k=s

condition := s<n

 p15 : variable := n

t16

expression := a=a-n

condition := a>=n

t17

expression := k=a

condition := a<n

 p16 : variable := n

t19

expression := n=n

 p17 : variable := l p18 : variable := sout

 p19 : variable := k

 p20 : variable := s

 p21 : variable := s

t13

expression := s=s

 p22 : variable := b p23 : variable := m

 p24 : variable := a

 p25 : variable := a

t18

expression := a=a

 p26 : variable := q

 p27 : variable := i

Initial Mark

Figure 4.11: PRES+ models corresponding to MODN source program

82 Chapter 4 Dynamic cut-point induced path construction method

/* Trimmed Version of MOD N */

#include <stdio.h>

int main(void) {

int s, i, n = 6, b = 6, sout, a = 120, k, l, t;

/* int sT0_6, sT1_8 (=k), sT2_8,

sT3_10,sT4_14,sT5_12 (=l),sT6_15 (=t);

/* some temporary variables trimmed out -- some renamed */

// int returnVar_main; /* trimmed out */

s = 0;

i = 0;

// returnVar_main = 0; /* trimmed out */

do {

if (i <= 15) {/* originally sT0_6= i <=15; if (sT0_6) */

i = (i + 1);

k = (b % 2);/* retain (renamed) Variable */

l = (a * 2);/* retain (renamed) variable */

//sT2_8 = (sT1_8 == 1); /* = (k==1) */

//sT4_14 = (l >= n); /* originally sT5_12 >= n */

b = (b / 2);

if (k == 1) {/* originally sT2_8 == 1 */

s = (s + a);

t = (l - n);

a = l;

} else {

t = (l - n);

a = l;

}

// sT3_10 = (s >= n); /* Trimmed out this statement */

if (s >= n) {/* originally sT3_10 = (s >= n); if (sT3_10) */

s = (s - n);

}

if (l >= n) {

a = t;

}

} /* end of loop condition */

else

break;

} while (1);

sout = s;

printf("%d \n", sout);

return 0;

}

Figure 4.12: Trimmed version of MODN

4.3 Experimental Results 83

 p1 : variable := s

t1

expression := s=i

 p2 : variable := n

t2

expression := n=i

 p3 : variable := i

t3

expression := i=0

 p4 : variable := a

t4

expression := a=i

 p5 : variable := b

t5

expression := b=i

 p6 : variable := s1

t6

expression := s=s

t12

expression := k=s+a

condition := k==1

t17

expression := s=s

 p7 : variable := s2

t8

expression := s=s

condition := i>15

 p8 : variable := n1

t11

expression := a=a/2

t16

expression := s=s-n

condition := s>=n

t20

expression := k=s

condition := s<n

 p9 : variable := i1

t14

expression := n=n

 p10 : variable := i2

t7

expression := s=s

condition := i<=15

 p11 : variable := a1

t21

expression := i=i+1

 p12 : variable := a2

t10

expression := a=a-n

condition := a>=n

t15

expression := k=a

condition := a<n

 p13 : variable := b1

 p14 : variable := b2

t9

expression := k=b

 p15 : variable := s

t13

expression := b=b/2

t18

expression := a=a

t19

expression := k=b

 p16 : variable := i

 p17 : variable := o

 p18 : variable := k

 p19 : variable := a

 p20 : variable := a

 p21 : variable := s

 p22 : variable := n

 p23 : variable := n

 p24 : variable := a

 p25 : variable := s

 p26 : variable := b

 p27 : variable := i

 p28 : variable := i

Initial Mark

Figure 4.13: PRES+ models corresponding to MODN trimmed transformed programs

84 Chapter 4 Dynamic cut-point induced path construction method

********************** Finding all paths of model N0 *****************************

Finding Cut-points type=0: Out-ports type=1 : In-ports, type=2: Backedge

**

The cutpoint list is:-

p1(type=1) p2(type=1) p3(type=1) p4(type=1) p5(type=1) p6(type=2)

p7(type=2) p8(type=2) p9(type=2) p10(type=2) p11(type=2) p12(type=2)

p13(type=2) p14(type=2) p15(type=2) p18(type=0) p22(type=2)

**

path 0: < { t1 } > path 1: <{ t2 } > path 2 : < { t3 } > path 3 : <{ t4 } >

path 4 : < { t5 } >

**

p10 (type=2) Degenerate case start...

**

p16 is Dynamic cut point p21 is Dynamic cut point p22 is Dynamic cut point

**

path 5 : < { t7 } > path 6 : < { t8 } > path 7 : < { t9 } >

path 8 : < { t11 } > path 9 : < { t12 } >

**

Degenerate case ends...

**

p20 is Dynamic cut point p24 is Dynamic cut point p25 is Dynamic cut point

**

path 10 : < { t10 ,t15 } > path 11 : < { t14 } >

**

p26 is Dynamic cut point p27 is Dynamic cut point

**

path 12 : < { t17 } > path 13 : < { t13 ,t19 } >

path 14 : < { t16 ,t20 } > path 15 : < { t18 } > path 16 : < { t21 } >

**

###################### Path construction time #####################################

No. of places in N0: 28 No. of transitions in N0: 21 DC in N0: 1

No. of paths in initial path cover of N0: 17 Exec time is 0 sec and 5532 microsecs

##

Figure 4.14: Output of DCP induced path construction module

4.3 Experimental Results 85

In the following example, we show our experimentation procedure using a parallel

example.

Example 13. We describe the above experimentation steps using the MINANDMAX-P

which computes the sum of the minimum among the set of four numbers and maximum

among the set of four numbers where the two sets contain a common element. Figure

4.15(a) depicts the original C code which is transformed by PLuTo and Par4All com-

pilers yielding the same output as shown in Figure 4.15(b). It may be noted that after

the common element is read, the two loops can proceed independent of each other; so

there is no shared variables–not even read-only ones–for this example. accordingly,

they are put manually under “]pragma scop” – “] pragma endscop” construct so that

when fed as input, the compilers create parallel threads as given in Figure 4.15(b).

Specifically, the parallel threads appear within the construct “] CLooG code” – “]

CLooG code” with the “] Par” construct depicting the parallel thread boundaries

(depicted in PLuTo version 0.2.0 version). Figure 4.16 represents schematically the

whole PRES+ model corresponding to the both source code and and the transformed

program. As the example MINANDMAX-P dose not contain any writable or readable

shared variables, their PRES+ representations are exactly identical. Figures 4.17 rep-

resents the manually constructed PRES+ subnet corresponding to the segment which

finds the maximum among the four input numbers; the subnet for finding minimum

among four given numbers is identical; dotted triangles of Figure 4.17 represent the

paths of the subnet. Every instance of scanf statements results in an in-port with

a post transition with identity function. The models have been validated using the

CPN simulator. Both these models are then fed one by one to the path construction

module. In Figure 4.17, when token tracking execution reaches the places p6; p7 and

p8, the degenerate case sets in (as is explained in Section 4.1); the degenerate case is

exited when the token tracking execution reaches the out-port of the overall net whose

schematic version is in Figure 4.16. For each of the models, our path construction

module gives the lists of static and dynamic cut-points, indicates entries to and exits

from the degenerate phase and then finally, prints the set of paths. Our tool also gives

the path construction time. For calculating time we have used get_cpu_time().

�

86 Chapter 4 Dynamic cut-point induced path construction method

int main() {
int num, max, min, i, j, out;
printf("Enter seven numbers:");
scanf("%d", &num);
max = min = num;

#pragma scop
for (i = 0; i < 3; i++) {

scanf("%d", &num);
if (max < num)

max = num;
}
for (j = 0; j < 3; j++)
{

scanf("%d", &num);

if (min > num)
min = num;

}
#pragma endscop

out = min + max;
printf("%d ", out);
return 0;

}
(a)

int main() {
int num, max, min, i,j, out;
printf("Enter seven numbers:");
scanf("%d", &num);
max = min = num;

CLooG code
for (i = 0; i < 3; i++) {

scanf("%d", &num);
if (max < num)

max = num;
\PAR

for (j = 0; j < 3; j++) {
scanf("%d", &num);
if (min > num)

min = num;
}

CLooG code
out = min + max;
printf("%d ", out);
return 0;

}
(b)

Figure 4.15: Source and transformed programs of MINANDMAX-P

Table 4.4 summarizes the observations made during our experimentation with the

above examples in terms of the numbers of places, transitions (trans), static (SCP)

and dynamic cut-points (DCP), degenerate cases (DC) and paths. In Table 4.5, the last

three columns depict the path construction times for the PRES+ models of the original

and transformed programs. It is to be noted that the paths are also examined manually

to ensure that they have been constructed correctly.

Example Original PRES+ Transformed PRES+

PLuTo Par4All

place trans SCP DCP DC path place trans SCP DCP DC path place trans SCP DCP DC path

BCM 10 6 6 2 0 3 11 7 6 2 0 3 11 7 6 2 0 3

MINANDMAX-P 28 21 11 16 1 21 28 21 11 16 1 21 28 21 11 16 1 21

LUP 55 53 30 17 2 35 52 50 29 17 2 34 52 50 29 17 2 34

DEKKER 34 32 20 9 1 17 30 29 18 5 1 17 30 29 18 5 1 17

PATTERSON 32 30 15 14 1 12 30 28 14 14 1 12 30 28 14 14 1 12

Table 4.4: Characterization of parallel examples

4.3 Experimental Results 87

Example Path Construction Time (µs)

Org PLuTo Par4All

BCM 965 929 929

MINANDMAX-P 6234 6234 6234

LUP 10279 9643 9640

DEKKER 14293 13876 13887

PATTERSON 8712 8199 8245

Table 4.5: DCP induced path construction times for hand constructed models of par-

allel examples

MAX MIN

id id

+

max
min

max min

out

id id id id id id id

i
n1

n2 n3 n4 n5
n6 n7j

Figure 4.16: Schematic of PRES+ models for MINANDMAX-P source and trans-

formed programs

88 Chapter 4 Dynamic cut-point induced path construction method

id(n1) id(n2) id(n3) id(n4)

L1

L1 L1
L1 L1

L2

n1
n2 4n3

n

num

id(num)

max

num

id(num)

0

id id(max

[max<num]

id(num)[max>=num]

[i==0]

[i==1] [i==2] [i==3]

[i<=3]
[i>3]

MAX

i+1

i

i

num

p1 p2 p3 p4 p5

p6

p7

p8

p9 p10
p11

p12

p13

p14

t1 t2 t3 t4 t5

t6

t7)t8

t9 t10

t11

L3

L2

L3

Figure 4.17: PRES+ subnet corresponding to MAX function

4.3.2 Experimentation using an automated model constructor

An automated PRES+ model constructor has been reported in [122] which constructs

PRES+ models for the input C programs. Since it cannot handle any parallel con-

struct, in this set up, we have only considered those programs whose both original and

transformed versions are sequential in nature. The experimental set up is as follows:

1. Preparation of the example suite: The sequential program suite is the same as

that described in subsection 4.3.1. However, unlike the first line of experimenta-

tion, in the present one, we want to compare the performances of the two PRES+

equivalence checking techniques described in this dissertation with these of the

FSMD equivalence checking technique reported in [20] on a common set of in-

puts, i.e., the FSMD models of the C programs. Hence, the automated model

constructor is equipped with a utility which takes FSMD models and creates the

corresponding C codes from which the PRES+ models are automatically con-

structed. The FSMD models of the example suite described in subsection 4.3.1

are taken from [14] and the corresponding C codes obtained using the above

mentioned utility; their PRES+ models are then obtained using the automated

4.4 Conclusion 89

model constructor. Each of the output PRES+ models is validated using the

CPN tool [70] by running on some test data.

2. Running the path constructor: Finally, we feed these two PRES+ models as

inputs to our path constructor module described in this chapter.

Table 4.6 represents the description of the sequential examples in terms of the

numbers of their places, transitions (trans), static (SCP) and dynamic cut-points (DCP),

degenerate phases encountered (DC) and paths. It is to be noted that the size of each

model in Table 4.6 is significantly large compared to the size of the corresponding

model in Table 4.2. The main reason behind this fact is that in Table 4.2, during

manual model construction human ingenuity is used; however in Table 4.6, due to

automated model construction, many dummy places and transitions are introduced

mechanically. Moreover, the model constructor is not adequately optimized. Dur-

ing experimentation with hand constructed models for sequential examples, we fail to

construct the PRES+ models for seven examples namely, BARCODE, PRAWN, DIF-

FEQ, DHRC, IEEE 754, QRS and EWF because of their large size of the code. The

article on equivalence checking for code motion using value propagation [20] records

the list of transformations which are applied on the seven examples. The last two

columns of Table 4.6 depict the path construction times for both original and trans-

formed PRES+ models. The path construction module is found to have worked under

both the contexts with the respective observed time units being consistent with the

model size. A typical output of the path construction module is given in Figure 4.14.

The entire tool is available in [14].

4.4 Conclusion

In order to capture computations by finite paths, a notion of dynamic cut-points has

been incorporated. The path construction method is described in detail and illustrated

with an example; a detailed complexity analysis has been carried out and formal cor-

rectness proofs have been presented; an implementation of the method has been tested

on the PRES+ models of some sequential programs and their transformed sequential

versions obtained using manual (or SPARK compiler driven transformations) and also

a separate set of sequential programs parallelized through some parallelizing compil-

90 Chapter 4 Dynamic cut-point induced path construction method

Example Original PRES+ Transformed PRES+ Path Const. Time (µs)

Place Trans SCP DCP DC Paths Place Trans SCP DCP DC Path Original Transformed

MODN 78 63 11 30 4 43 76 61 18 30 4 42 11345 10863

SUMOFDIGITS 46 31 12 20 3 28 32 23 9 20 3 18 6341 5834

PERFECT 160 113 32 98 6 100 47 32 18 14 3 27 33432 10943

GCD 94 71 36 34 3 52 75 57 28 30 3 49 15534 13426

TLC 362 313 80 85 7 103 189 171 52 72 7 52 195938 86723

DCT 160 71 17 12 0 14 108 70 17 12 0 14 18913 16724

LCM 97 72 37 31 3 52 78 68 28 31 3 49 16534 14426

LRU 880 546 354 234 6 178 865 532 312 213 6 178 447174 387155

PRIMEFACS 76 56 28 30 7 49 47 33 17 20 7 26 11116 10730

MINANDMAX-S 115 56 32 83 1 56 104 51 38 66 1 51 12544 12230

DIFFEQ 82 44 23 59 1 44 72 34 23 49 1 34 16342 11652

DHRC 1953 1244 234 802 3 121 1708 944 234 534 3 107 4494567 4092345

PRAWN 1736 1582 502 429 5 782 1724 1575 502 425 5 782 7508172 7023523

IEEE 754 1261 996 312 413 10 430 1805 1492 485 363 17 415 2976048 2975124

BARCODE 1730 1099 534 842 22 884 2655 1757 610 930 28 1024 3019502 6174098

QRS 880 546 354 234 6 178 865 532 312 213 6 156 447174 387155

EWF 1123 826 415 201 8 540 1054 775 318 413 9 525 2046828 1261312

Table 4.6: DCP induced path construction times for sequential examples using auto-

mated model constructor

ers. It is to be noted that the entire experimentation is carried out along two courses.

The first one has used hand constructed models and the second course of experimen-

tation has been carried out using an automated model constructor. In the next chapter,

we develop a path based equivalence checker with the dynamic cut-point based path

construction module described in this chapter as its front end.

Chapter 5

Equivalence Checking Method using
Dynamic Cut-points

In Chapter 4, we have discussed a dynamic cut-point based path construction method.

In this chapter, we describe a dynamic cut-point induced path based equivalence

checking method which uses the path construction module as its subroutine. In the

sequel, we refer to this method as DCPEQX method. Before describing the method, it

is first proved in general that any method which uses such dynamic cut-point induced

paths is sound.

5.1 Validity of dynamic cut-point induced path based

equivalence checking

To prove the validity of dynamic cut-point induced path based equivalence checking,

we need the following definitions.

Definition 21 (Path equivalence, Transition correspondence and Place correspondence).
Let N0 and N1 be two PRES+ models with their in-port bijection fin and out-port bijec-

tion fout . Equivalence of paths of N0 and N1, a transition correspondence relation, de-

noted as ηp � T0�T1, and a place correspondence relation, denoted as ηp � P0�P1,

are defined as follows:

91

92 Chapter 5 DCP Induced Path Based Equivalence Checking Method

1. fin � ηp,

2. Two paths α of N0 and β of N1 are said to be equivalent denoted as α ' β if

8p2 �α, there exists exactly one p0 2 �β such that f 0
pv(p) = f 1

pv(p0);hp; p0i 2ηp,

Rα(fpv(
�α))� Rβ(fpv(

�β)) and rα(fpv(
�α)) = rβ(fpv(

�β)).

3. For any two equivalent paths α;β, h last (α), last (β) i 2 ηt and 8p2 α�; p0 2 β�

if f 0
pv(p) = f 1

pv(p0), then hp; p0i 2 ηp.

4. If 8p2 α�; p0 2 β�, f 0
pv(p) 6= f 1

pv(p0) or there do not exist any paths α
0
of N0 and

β
0
of N1 such that p 2 �α

0
p0 2 �β

0
and α

0
' β

0
, then hp; p0i =2 ηp.

It may be noted that the above definition provides a procedural mechanism to

build the equivalence relation among paths and the correspondence relations ηt and

ηp. Clause (1) depicts the fin-pairs as the initial pairs of ηp. Then clause (2) can be

used to identify the equivalent pairs of paths originating from the respective in-ports.

Such paths, in turn, would define members of ηt and further members of ηp. Repeated

applications of clause (2) followed by clause (3) would respectively introduce newer

members in the path equivalence relation and in ηt and ηp. The process continues

until no new member gets added to the path equivalence relation by clause (2). At this

stage, clause (4) can be applied to filter out some extraneous members of ηp.

Theorem 6. A PRES+ model N0 is contained in another PRES+ model N1, denoted

as N0 v N1, if there exists a finite path cover Π0 = fα0;α1; : : : ;αlg of N0 for which

there exists a set Π1 = fβ0;β1; : : : ;βlg of paths of N1 such that for all i;0 � i � l;

(i) αi ' βi, (ii) the places in �αi have correspondence with those in �βi and (iii) the

places in α�
i have correspondence with those in β�i .

Proof. Consider any computation µ0;p for an out-port p of N0. It is required to prove

that for the out-port p0 = fout(p) of N1, there exists a computation µ1;p0 ' µ0;p. Let

µ0;p = hT1;T2; : : : ;Ti; : : : ;Tli where, �T1 � inP0, p 2 T �
l and for all i;1� i� l, if T �

i �

PMi , for some marking Mi and T �
i+1 � PMi+1 , for some marking Mi+1, then Mi+1 = M+

i .

Since Π0 is a path cover of N0, µ0;p can be captured as a concatenation (α
(1)
1 k α

(1)
2 k

: : : k α
(1)
n1):(α

(2)
1 k α

(2)
2 k : : : k α

(2)
n2) : : :(α

(t)
1) = µc

0;p, say, of parallelisable paths of Π0

such that µ0;p ' µc
0;p. (Note that the last member in the concatenated sequence must

be a single path because the last set Tl in µ0;p is a singleton.)

5.1 Validity of dynamic cut-point induced path based equivalence checking 93

From µc
0;p let us construct a concatenated sequence µc

1;p0 = (β
(1)
1 k β

(1)
2 k : : : k

β
(1)
n1):(β

(2)
1 k β

(2)
2 k : : : k β

(2)
n2) : : :(β

(t)
1) of parallelisable paths of N1 such that for all

i;1 � i � t, for all j;1 � j � ni;α
(i)
j ' β

(i)
j with any place in �(α

(i)
j) having a corre-

spondence with some place in �(β
(i)
j) and any place in (α

(i)
j)� having a correspondence

with some place in (β
(i)
j)�. From the premise of the theorem, such paths exist; also,

µc
0;p ' µc

1;p0 .

Consider the ith group (β
(i)
1 k β

(i)
2 k : : : k β

(i)
ni) of µc

1;p0 . For any j;1� j � ni, let the

jth path β
(i)
j in the ith group be the sequence hT (i)

1; j ;T
(i)

2; j ; : : :T
(i)

l j; ji of parallelisable tran-

sitions. For all k;1 � k �
nimax

j=1
(l j), we combine all the kth transitions of all the paths

in the ith group through the union operation to form a single set of parallelisable tran-

sitions T (i)
k =

niS

j=1
T (i)

k; j ; obviously, the paths in the ith group can be of varying lengths

and those having lengths less than k will not contribute to the set Tk. Let the maximum

length of the paths occurring in the ith group be mi. Then the above step of combining

the transition sets of the paths groupwise results in a sequence of parallelisable transi-

tions µc0
1;p0 = hT (1)

1 ;T (1)
2 ; : : : ;T (1)

m1 ;T
(2)

1 ; : : : ;T (2)
m2 ; : : : ;T

(t)
1 ; : : : ;T (t)

mt i. We show that µc
1;p0

is a computation of the out-port p0 of N1 as per definition of computation (Definition

8). What remains to be proved is that for any two consecutive transition sets T;T+

in µc
1;p0 , if (T+)� � PM1;i+1 and (T)� � PM1;i , then M1;i+1 = M+

1;i, i.e., PM1;i+1 = P+
M1;i

.

Recall that

PM+
1;i
= fp j p 2 t� and t 2 TM1;ig[fp j p 2 PM1;i and p =2 �TM1;ig : : :(1)

Note that T+ = TM1;i , the set of enabled transitions for the marking M1;i. We

give the proof of PM1;i+1 � PM+
1;i

; the proof of PM+
1;i
� PM1;i+1 follows identically. Now,

consider any p 2 PM1;i+1 . Either p 2 (T+)� or p =2 (T+)�.

� Case 1: p 2 (T+)�) p 2 t, for some t 2 T+ = TM1;i) p 2 PM+
1;i

because p 2

the first subset in the definition (1) of PM+
1;i

.

� Case 2: p =2 (T+)�: In this case, p 2 PM1;i+1) p 2 PM1;i and and p =2 �t, for any

t 2 T+ = TM1;i) p 2 PM1;i and p =2� TM1;i) p 2 PM+
1;i

because it belongs to the

second subset in the definition (1) of PM+
1;i

.

94 Chapter 5 DCP Induced Path Based Equivalence Checking Method

The above theorem leads to a method for checking equivalence between two PRES+

models consisting of the following steps:

1. Introduce static and dynamic cutpoints and hence construct the paths of N0 and

N1.

2. Construct the initial path covers Π0 of N0 and Π1 of N1, comprising paths from

a set of cutpoints to another cutpoint without having any intermediate cutpoint.

Let Π0 = fα0;α1; � � � ;αkg and Π1 = fβ0;β1; � � � ;βlg.

3. Show that 8αi 2 Π0, there exists a path β j of N1 such that �αi have correspon-

dence with �β j and αi ' β j. If all the paths of Π0 is found to have equivalence

with some paths of N1, then it is inferred that N0 v N1.

4. Let ΠE
1 �Π1 be the paths of N1 which are found to have equivalence with paths

of Π0 in step 3. If Π1�ΠE
1 6= /0, it is inferred that N1 6v N0. Otherwise, it is

inferred that N1 v N0.

Step 3 may fail because of code motion transformations where the code segments

move beyond the basic block boundaries. In this situation, some paths αi 2 Π0 have

no equivalent paths in N1. In such a case, either αi or some path of N1 having pre-place

correspondence with αi is to be extended till equivalence of the resulting concatenated

path(s) are obtained. The idea of path extension is similar to that of path based FSMD

equivalence checking mechanism [20]. Intricacies, however, arise due to presence

of paths parallel to the path being extended. The mechanism is illustrated using the

following example.

Example 14. Figure 5.2(a) depicts a PRES+ model N0 which can be obtained from

a simple parallel program schema given in Figure 5.1 (a). Figure 5.2(b) depicts the

PRES+ model N1 corresponding to the schema given in Figure 5.1 (b) which is ob-

tained by moving the code segment c3 in parallel with the segments c0 and c1. Transi-

tions having ft =+ with more than two pre-places indicate application of the function

an appropriate number of times. The paths α0 in N0 and β0 in N1 corresponds to the

code segment c0; the paths α1 in N0, β1 in N1 corresponds to the code segment c1; the

path α2 in N0 corresponds to the code segment c2; note that this code segment does

not appear explicitly in the transformed schema of Figure 5.1 (b); the paths α3 in N0

(Figure 5.2 (a)) and β2 in N1 (Figure 5.2 (b)) corresponds to the code segment c3 in

5.1 Validity of dynamic cut-point induced path based equivalence checking 95

0 , C1; C

 C2 , C3;

4; C

 C0 , C1, C 3;

4; C ’

#parbegin

#parend

#parbegin

#parend

#parbegin

#parend

(a) (b)

Figure 5.1: Code motion transformation for parallel programs

Figure 5.1; the path α4 in N0 corresponds to the code segment c4 in the schema of

Figure 5.1 (a); the path β3 in N1 (Figure 5.2 (b)) corresponds to the code segment c
0

4

in the transformed schema of Figure 5.1 (b).

Steps 1 and 2 will construct the initial path cover Π
0

0 of N0 in Figure 5.2 (a) as

fα0;α1;α2;α3;α4g and the initial path cover Π
0

1 of N1 in Figure 5.2(b) as fβ0;β1;β2;β3g.

(Note that the computation µ0;p12 can be represented as (((α0jjα1):α2)jjα3):α4. Sim-

ilarly, µ1;p012
can be represented as (β0jjβ1jjβ2):β3). In step 3, paths α0 and α1 will

be found to have equivalence with the paths β0 and β1, respectively. As the equivalent

path for the path α2 is tried to be obtained, all its pre-places �α2 = fp4; p5; p6g are

found to have correspondence with the places fp
0

4; p
0

5; p
0

6g �
� β3 but α2 6' β3. How-

ever, since �α2 �
� β3 there is a possibility of extending α2 through its successor path

(α4 in this case) so that α2:α4 may have equivalence with β3. This necessitates that

the correspondence of all places in �(α2:α4) with places in N1 must be available. In

other words, the equivalence of all the pre-path(s) of the path α4 through which the

extension is sought with some paths in N1 must be established before carrying out the

extension. So, the equivalent path for the path α3 has to be identified first. In this case,

α3 will be found to have equivalence with β2 and now an extended path (α2:α4) = αe,

say, will be obtained; subsequently, �αe = fp4; p5; p6; p10; p11g will have correspon-

dence with �β3 = fp
0

4; p
0

5; p
0

6; p
0

10; p
0

11g; finally, the equivalence between (α2:α4) and

β3 will be established through the equivalence of their conditions of execution and

equality of their data transformations. �

96 Chapter 5 DCP Induced Path Based Equivalence Checking Method

− +

 +

 +

 −

 +

(a)
(b)

p0 p1 p2
p3

p4 p5 p6

p4

p8 p9

p11

p12

 + +

p
0

p
1

p
2

p
3

p
8

p
9

p p
5 6

p
10

p
11

p
12

p
t1

t1t2

t2

t3

t3

t4

t4

t5

p
10

 +

’ ’ ’ ’ ’ ’

’4 ’ ’ ’ ’

’

’

’ ’ ’α0 α1

α2

α3

α
4

β0

β1

β

3
β

2

Figure 5.2: An Illustrative Example for Equivalence Checking

In the next section, we present the formal steps (incorporating path extension) of

an equivalence checking algorithm.

5.2 An Equivalence Checking Method

The checkEqDCP (Algorithm 14) function is the central module for DCPEQX method.

The inputs to this function are the PRES+ models, N0 and N1. The outputs are the final

path covers Π0 of N0 and Π1 of N1, a set E of ordered pairs of equivalent paths of N0

and N1 and the set Πn;0 of paths of N0 and Πn;1 of paths of N1 for which no equivalent

is found (in the other PRES+ model) even with extension, if needed.

The function starts by initializing the set ηp of ordered pairs of corresponding

places of N0 and N1 to the in-port bijection fin (Definition 21); the set ηt of ordered

pairs of corresponding transitions of N0 and N1 and the sets E;Π0;Π1;Πn;0 and Πn;1

are initialized to empty. It then constructs the set Π
0

0 of paths of N0 and the set Π
0

1 of

paths of N1 by introducing static and dynamic cutpoints. These sets are the respective

initial path covers of N0 and N1. It is to be noted that Π0 and Π1 are the final path

cover which are obtained from Π
0

0 and Π
0

1, respectively.

5.2 An Equivalence Checking Method 97

For each path of α of Π
0

0 (of N0), the function checkEqDCP calls findEqvDCP func-

tion which tries to find an equivalent path from Π
0

1 of N1. The function findEqvDCP

returns a path-flag pair, hβ;λi, where β is a path of N1 which can be considered to be

a candidate for checking equivalence with α. The candidate path of α is defined as

follows.

Definition 22 (Candidate path). Let N0 and N1 be two i/o-compatible PRES+ models.

A path β of N1 is said to be a candidate path for (checking equivalence with) a path α

of N0 if one of the following conditions holds:

(i) 8p 2 �α, if p 2 inP0, then 9p0 2 �β such that hp; p0i 2 ηp.

(ii) 8p 2 �α, if p 2 α�
1, for some α1 2 Π0, then 9p1 2

�β such that p1 2 β�1 and

hlast(α1), last(β1)i 2 ηt .

The function findEqvDCP uses the function findCandidate which, in turn, either

returns a candidate path or or an empty path. Depending on the value of the flag λ we

have the following cases:

λ = 0: the function has found a candidate path β in N1 which has a stronger condition

of execution than that of α, i.e., (Rβ(f 1
pv(

�β))) Rα(f 0
pv(

�α)) or j�αj< j�βj. The sec-

ond condition suggests that some code segment after α in N0 may have been moved

prior to α; hence α, possibly with other paths, parallel to α are extended.

λ = 1: the function has found a candidate path β in N1 which has a weaker condition

of execution than that of α, i.e., (Rα(f 0
pv(

�α))) Rβ(f 1
pv(

�β)) or j�βj< j�αj. The sec-

ond condition suggests that possibly some code segment prior to α has been moved

after α; hence the path β, possibly along with some parallel paths, are to be extended.

λ = 2: there is no candidate path β in Π
0

1 emanating from the places correspond-

ing to the pre-places of α such that (Rα(f 0
pv(

�α)) � Rβ(f 1
pv(

�β)) or(Rα(f 0
pv(

�α)))

Rβ(f 1
pv(

�β)) or (Rβ(f 1
pv(

�β))) Rα(f 0
pv(

�α)). Hence, there is no scope of extension at

all; it then updates Πn;0 by adding the path α to it and also updates Π
0

0 by deletion of

α.

λ = 3: the candidate path β is an equivalent path of α and j�βj= j�αj. The following

entities are updated: (1) The set ηt of corresponding transitions by adding the pair

comprising the last transition of the path α and that of β; (2) the set E of ordered pairs

of equivalent paths by adding the ordered pair hα;βi; (3) the initial path covers Π
0

0 of

N0 and Π
0

1 of N1 by deleting the paths α from Π
0

0 and β from Π
0

1; (4) α is added to the

98 Chapter 5 DCP Induced Path Based Equivalence Checking Method

final path cover Π0 of N0 and β to Π1 of N1; (5) The set ηp of corresponding places

by adding the pair comprising the post-place of the last transition of the path α and

that of β.

λ = 4: β is an equivalent path of α but j�βj < j�αj. The sets ηp;ηt ;E;Π
0

0 and Π0 are

updated identically as in λ = 3 – case. The sets Π
0

1 and Π1 are not updated because

the path β may turn out to be equivalent to other paths of Π
0

0 as well.

λ = 5: β is an equivalent path of α but j�βj > j�αj. The sets ηp;ηt ;E;Π
0

1 and Π1 are

updated identically as in λ = 3 – case. Again, the sets Π
0

0 and Π0 are not updated

because of similar reason as stated in λ = 4 – case.

Extension of a path α of N0 (accomplished by the function prepareForExtension)

involves the following steps:

1. All the post-paths of α are identified. Such paths include those which emanate

from the post-places α� (under different guards) or synonymously, those which

emanate from the post-places of the last transition of α.

2. For each post-path α
0
, all the pre-paths of α

0
other than α are identified. Some

of these may not execute in parallel (with α). For example, let fα;α1;α2;α3g

be three such pre-paths of α
0
; let α2 and α3 have an identical post-place. Hence,

α2 and α3 cannot execute in parallel because the models are one-safe. So

the pre-paths (including α) are decomposed into two subsets fα;α1;α2g and

fα;α1;α3g by the function findSetOfSetsOfPrePaths.

3. The function trimPrePaths is invoked to trim each of the subsets of pre-paths

of the members (other than α) each of which is found to have equivalence (with-

out any extension) with some path in N1. To accomplish this task, the function

trimPrePaths invokes findEqvDCP function. If it is detected that such a path

may have to be extended before its equivalence is found, then no action is ini-

tiated because they are already under consideration for extension. However, if

it is found that the path does not merit any further consideration (such as exten-

sion), it is put in the set Πn;0 of paths of N0 which may have no equivalent path

in N1. The set is not used for extension.

4. Finally, extended paths are created for each of the remaining pre-paths obtained

from step (2). These pre-paths and the post-paths are removed from Π
0

0 and

the extended path is included in it for normal processing. This step is achieved

5.2 An Equivalence Checking Method 99

in the function extend. Extension of paths of N1 takes place in an identical

manner.

When all the paths in the path cover Π
0

0 of N0 have been examined exhaustively

(i.e., Π
0

0 is rendered empty), all the paths remaining in Π
0

1 are put in Πn;1. The function

then checks Πn;0 and Πn;1; we have the following four cases:

� Case 1: Πn;0;Πn;1 = /0) N0 � N1.

� Case 2: Πn;0 = /0;Πn;1 6= /0) N0 v N1 and N1 6v N0.

� Case 3: Πn;0 6= /0;Πn;1 = /0) N1 v N0 and N0 6v N1.

� Case 4: Πn;0;Πn;1 6= /0) N0 and N1 may not be equivalent.

The functional modules are depicted in Algorithms 7 � 13 with Algorithm 14

being the top level module. The call graph of the dynamic cut-point based equivalence

checking algorithm is given in Figure 5.3. During path extension in the equivalence

checking phase, it is necessary to extend either a path from N0 or one from N1 (and

not both). This fact necessitates that the function prepareForExtension and all the

functions it calls should be symmetric. Hence, except checkEqDCP function, each of

the other modules in the equivalence checking phase is associated with a binary flag

designating which PRES+ model it has to work upon.

The following example illustrates how the equivalence checking algorithm works.

Example 15. Consider the PRES+ models given in Figure 5.2 (a) and (b). For this

example, the equivalence checking method progresses through the following steps:

1. Let fin be fp0 7! p
0

0; p1 7! p
0

1; p2 7! p
0

2; p3 7! p
0

3; p5 7! p
0

5; p8 7! p
0

8; p9 7!

p
0

9; p10 7! p
0

10g. The set ηp of corresponding places is initialized to fin. The

sets ηt ;E;Π0;Π1;Πn;0;Πn;1 are initialized to /0.

2. For α0, the function findEqvDCP identifies (by the function findCandidate)

the path β0 as the candidate for examining equivalence with α0 because both

have two pre-places correlated by the function fin. Since j�α0j = j�β0j, the func-

tion findEqvDCP identifies that Rα0(f 0
pv(

�α0)) � Rβ0(f 1
pv(

�β0))(� >) and

rα0(f 0
pv(

�α0))= rβ0(f 1
pv(

�β0)) (i.e., vp0�vp1 = vp00
�vp01

and puts hp0; p
0

0i;hp1; p
0

1i

in ηp) and infers α0 ' β0.

100 Chapter 5 DCP Induced Path Based Equivalence Checking Method

findPostPaths

trimPrePaths
extend findSetOfSetsOfPrePaths

findCandidate

findEqvDCP

checkEqDCP

constAllPathDCP

prepareForExtension

Figure 5.3: Call Graph for the Verification Algorithm

3. Consequently, the function checkEqDCP removes the path α0 and β0 from Π
0

0

and Π
0

1, respectively, adds the path α0 to Π0 and β0 to Π1 and adds h �(α�
0),

�(β�0) i in ηt , puts hα�
0;β

�
0i hp4; p

0

4i in ηp and hα0;β0i in E.

4. Similarly, α1 is found to have equivalence with β1 and the sets Π
0

0;Π
0

1;Π0;Π1;ηt ;ηp

and E are updated.

5. For α2, the function findCandidate identifies the path β3 as the candidate

path for α2 because (i) α�
0, α�

1 2
�α2, (ii) h �(α�

0),
�(β�0) i, h

�(α�
1),

�(β�1) i

2 ηt) β�0, β�1 2 the pre-places of the candidate paths. Hence, the function

findEqvDCP is invoked with β3.

6. Since findEqvDCP finds j�α2j= 3 < j�β3j= 5 and rα2(f 0
pv(

�α2)) 6= rβ3(f 1
pv(

�β3)),

it returns hα2;λi with λ = 4 ascertaining that an extension of α2 is required.

7. The function checkEqDCP calls prepareForExtension.

(a) prepareForExtension calls the function findPostPaths which

returns the set of post-paths of α2, i.e., fα4g.

(b) For the path α4, the function prepareForExtension calls

findSetOfSetsOfPrePaths to obtain the mutually exclusive subsets

of pre-paths of α4 as the single subset fα2;α3g.

(c) For fα2;α3g, the function prepareForExtension calls trimPrePaths;

the latter function finds α3 to be equivalent to β2 by invoking the function

5.2 An Equivalence Checking Method 101

findEqvDCP and accordingly updates the sets Π
0

0;Π
0

1;Π0;Π1;ηt ;ηp and

E.

(d) As the set of pre-paths obtained after trimPrePaths is not empty, the

function prepareForExtension calls extend function which re-

turns the extended path αe as (α2:α4). The paths α2 and α4 are then

removed from Π
0

0; the path αe is added to Π
0

0 and control is returned to

checkEqDCP.

8. checkEqDCP finds αe ' β3 using the function findEqvDCP. The following

entities are as follows: Π
0

0 = /0;Π
0

1 = /0;Π0 = fα0;α1;α3;αeg;Π1 = fβ0;β1;β2;β3g;

ηt = fh�(α�
0);

�(β�0)i, h
�(α�

1);
�(β�1)i, h

�(α�
3);

�(β�2)i, h
�(α�

e);
�(β�3)ig, ηp = f h

(α�
0), (β

�
0) i, h (α

�
1), (β

�
1) i, h (α

�
3), (β

�
2) i, h (α

�
e), (β

�
3)ig and E = f h (α0), (β0)

i, h (α1), (β1) i, h (α3), (β2) i, h (αe), (β3) i g.

9. Since Π
0

0 is now empty, checkEqDCP identifies that Πn;0 = Π
0

1 = /0 and de-

clares that the two models N0 and N1 are equivalent.

�

The above algorithm is now analysed for termination, complexity and soundness

in the following subsections.

5.2.1 Termination of the equivalence checking algorithm

The path construction algorithm terminates as shown in Chapter 4. Therefore, the

respective path covers Π
0

0 and Π
0

1 of N0 and N1 produced by this algorithm are finite

and the equivalence checking phase starts with finite Π
0

0 and Π
0

1. The following lemma

establishes that they remain finite in the equivalence checking phase. The termination

of the equivalence checking phase hinges upon this property.

Lemma 4. Both the initial path covers Π
0

0 and Π
0

1 of N0 and N1, respectively, remain

finite across all the functions (Algorithms 7-14) in the equivalence checking phase.

Proof. Only deletion takes place from Π
0

0

�
Π

0

1

�
in the functions trimPrePaths and

checkEqDCP (Algorithms 11 and 14). If they start with finite values of Π
0

0

�
Π

0

1

�
,

102 Chapter 5 DCP Induced Path Based Equivalence Checking Method

the finiteness is preserved. Both deletion from and addition to the set Π
0

0

�
Π

0

1

�
takes

place in the function prepareForExtension (Algorithms 13). Step 10 of the function

prepareForExtension (Algorithm 13) updates Π
0

0

�
Π

0

1

�
by deleting the set ΓP of

trimmed pre-paths of γ
0
, the path γ

0
itself and adding the extended path γe = ΓP:γ

0
.

So,
���Π0

0

����
���Π0

1

���� decreases by jΓPj+ 1 and increases by 1, i.e., an effective decrease

by jΓPj. However, jΓPj � 0. If jΓPj = 0; then it remains the same. Hence, in each

iteration (step 3 to 12)
���Π0

0

����
���Π0

1

���� either decreases or remains the same. Outside

the loop, since in step 1 there is a decrease by 1,
���Π0

0

����
���Π0

1

���� decreases in every

invocation of function. No other function changes Π
0

0

�
Π

0

1

�
.

Theorem 7. checkEqDCP function (Algorithm 14) always terminates.

Proof. The function checkEqDCP (Algorithm 14) consists of a loop which depends on

jΠ
0

0j and there is no recursive call also. Hence, the loop always terminates as given in

Lemma 4. Therefore, the above mentioned function terminates.

5.2.2 Complexity analysis of the equivalence checking algorithm

We discuss the complexity of the equivalence checking algorithm in a bottom-up man-

ner.

Functional Specification of Algorithm 7 (findCandidate): The function

identifies the candidate paths for checking equivalence with the input path γ based

on the correspondence of their pre-places decided by either the in-port bijection fin or

the correspondence between the last transition of the preceding paths (as recorded in

ηt) or their post-places decided by the out-port bijection fout .

Complexity of Algorithm 7 (findCandidate): Steps 1 to 6 take O(1) time.

Condition detection steps for Case 1 and Case 4 take O(jPj) time and that for cases

2, 3 and 5 take O(jPj log jPj) time assuming that pre-places of any path and the sets

inP0; inP1;outP0 and outP1 are maintained in sorted order. The statements in each of

the cases take O(jT j log jT j) time and iterate as many times as the number of paths

which is bounded by jT j : jPj, i.e., O(jT j:jPj) times. Hence, the overall complexity of

this function is O(fmax(jT jlogjT j; jPjlogjPj)g:jT j:jPj).

5.2 An Equivalence Checking Method 103

Functional Specification of Algorithm 8 (findEqvDCP): The function tries

to find an equivalent path of γ from the candidate paths obtained from the function

findCandidate (Algorithm 7). The function findEqvDCP returns a path-flag pair,

hγ
0
;λi, where γ

0
is a candidate path of N0 (N1) which is closest to γ of N1 (N0), if not

equivalent, or an empty path. If flag value is 0, γ (= α) is a path of N0 and Π
0
(= Π

0

1).

Otherwise, γ (= β) is a path of N1 and Π
0
(= Π

0

0). It returns a path-flag pair hγ
0
;λi,

where γ
0
is a path of N0 or N1 (depending upon flag) or an empty path and λ has the fol-

lowing values: λ = 0) R
γ
0 (fpv(

�γ
0
))! Rγ(fpv(

�γ)) and R
γ
0 (fpv(

�γ
0
)) 6� Rγ(fpv(

�γ)):

extend γ(= α), λ = 1) Rγ(fpv(
�γ))! R

γ
0 (fpv(

�γ
0
)) and R

γ
0 (fpv(

�γ
0
)) 6� Rγ(fpv(

�γ)):

extend γ
0
(= β), λ = 2 R

γ
0 (fpv(

�γ
0
)); Rγ(fpv(

�γ)) and Rγ(fpv(
�γ)); R

γ
0 (fpv(

�γ
0
)):

no scope of extension at all, λ = 3): γ
0

is an equivalent path. λ = 4): γ
0

is an

equivalent path, where (j�γ
0
j � j�γj � 1). λ = 5): γ

0
is an equivalent path, where

(j�γj� j�γ
0
j � 1).

Complexity of Algorithm 8 (findEqvDCP): Step 1 uses findCandidate func-

tion which takes O(fmax(jT jlogjT j; jPjlogjPj)g:jT j:jPj) as explained above. Testing

of the respective condition of cases 1, 2 and 3 takes O(jPj) time. For Case 1, we need

to consider three sub-cases as given in steps 4, 7 and 10. Each of these steps com-

pares the condition of execution and the data transformation for each path. Hence the

complexity for each of this comparison is O(jF j), where jF j is the length of the for-

mula. The body of the loop takes maximum among the three cases 1, 2 and 3 which is

O(jF j+ jPj). The loop iterates as many times as the number of paths which is bounded

by jT j:jPj. Hence, the overall complexity is O((fmax(jT jlogjT j; jPjlogjPj)g+ jF j) :

jT j:jPj).

Functional Specification of Algorithm 9 (findPostPaths): The function

computes the post-paths of γ through which γ can be extended. Such paths include

those which emanate from the post-places γ� (under different guards) or those which

emanate from the post-places of the last transition of γ.

Complexity of Algorithm 9 (findPostPaths): Step 1 takes O(1) time. In

Step 3, there is a conditional branch which takes O(jPj) time. If the condition is true,

the function updates the set of paths by union operation which takes O(1) time. The

loop involved in step 2 iterates O(jT j:jPj) time. Hence, the complexity of this function

is O
�
jPj2:jT j

�
.

104 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Functional Specification of Algorithm 10 (findSetOfSetsOfPrePaths):
The function computes all the pre-paths of γ

0
other than γ. Some of these may not

execute in parallel (with γ). For example, let fγ;γ1;γ2;γ3g be three such pre-paths of γ
0
;

let γ2 and γ3 have an identical post-place. Hence, γ2 and γ3 cannot execute in parallel

because the models are one-safe. So the pre-paths (including γ) are decomposed into

two subsets fγ;γ1;γ2g and fγ;γ1;γ3g.

Complexity of Algorithm 10 (findSetOfSetsOfPrePaths): Step 1 takes

O(1) time. In Step 3, there is a conditional branch which takes O(jPj) time. If the

condition is true, the function updates the set of paths by union operation and it takes

O(1). The loop involved in step 2 iterates O(jjT jj:jjPjj) time. Hence, the complexity

of the loop in step 2 is O
�
jPj2:jT j

�
time. Similarly, in step 8 the function computes

Γ�
P and it takes O(jPj) time. For each member in Γ�

P, the function checks whether

j�pj > 1); if the statement is true, the function computes the mutually exclusive sub-

sets of pre-paths and it takes O(jT j) time. This step iterates O(jPj) time. Hence,

the complexity of this step is O(jPj:jT j). In the next step the function computes the

Cartesian product of mutually exclusive subsets of pre-paths and it takes O
�

2(
jT j
2)
�

time. Hence, the overall complexity of this function is O
�

2(
jT j
2)
�

time.

Functional Specification of Algorithm 11 (trimPrePaths) : Each of the sub-

sets of pre-paths is trimmed of the members (other than γ) which are found to have

equivalence (without any extension) with some path in N0(N1). If it is detected that

such a path may have to be extended before its equivalence is found, then no action

is initiated because they are already under consideration for extension. However, if it

is found that the path does not merit any further consideration (such as extension), it

is put in the set Πn;0(Πn;1) of paths of N0(N1) which may have no equivalent path in

N0(N1). The set is not used for extension.

5.2 An Equivalence Checking Method 105

Algorithm 7 SETOFPATHS findCandidate (f lag;γ;ηt ;Π
0
; fin; fout)

Inputs: The first parameter is a flag. The second parameter γ: a path. If flag = 0, it belongs to N0; if
flag = 1, it belongs to N1. The third parameter ηt : the set of corresponding transition pairs. The fourth
parameter Π

0

: a set of paths remaining from the original path cover. If flag = 0, it belongs to N1; if
flag = 1, it belongs to N0. The fifth parameter fin: in-port bijections. The sixth parameter fout : out-port
bijections.
Outputs: The set Γ0 of paths of the PRES+ model other than the model having γ from which equivalent
of γ should be found.

1: SETOFPATHS Γ
0

= /0;
2: if (flag = 0) then
3: inP0 = inP0;outP0 = outP0;
4: else
5: inP0 = inP1;outP0 = outP1;
6: end if
7: Case 1 (�γ� inP

0

):
8: for each γ

0

2Π
0 do

9: �γ
0

= fin(
�γ); // inP0 = inP0(inP1) if f lag = 0(1)

10: Γ
0

= Γ
0

[fγ
0

j fin(
�γ) 2� γ

0

g;
11: end for
12: return Γ0;
13: Case 2 (�γ\ inP

0

6= /0) :
14: for each γ

0

2Π
0 do

15: �γ
0

= fin(
�γ\ inP

0

);
16: Γ

0

1 = fγ
0

j fin(
�γ\ inP

0

) 2� γ
0

g;
17: Tpre = ftc j ht; tci 2 ηt ; t 2� (�γ)g;
18: Γ

0

= Γ
0

[Γ
0

1[fγ
0

j� γ
0

= (Tpre)
�g;

19: end for
20: return Γ0;
21: Case 3 (�γ\ inP

0

= /0) :
22: for each γ

0

2Π
0 do

23: Tpre = ftc j ht; tci 2 ηt ; t 2� (�γ)g;
24: Γ

0

= Γ
0

[fγ
0

j� γ
0

= (Tpre)
�g;

25: end for
26: Case 4 (γ� � outP

0

): // outP0 = outP0(outP1) if f lag = 0(1)
27: for each γ

0

2Π
0 do

28: (γ
0

)� = fout(γ
�);

29: Γ
0

= Γ
0

[fγ
0

j fout(γ
�) 2 (γ

0

)�g;
30: end for
31: return Γ0;
32: Case 5 (γ�\outP

0

6= /0) :
33: for each γ

0

2Π
0 do

34: (γ
0

)� = fout(γ
�\outP

0

);
35: Γ

0

1 = fγ
0

j fout(γ
�\outP

0

) 2 (γ
0

)�g;
36: Tpre = ftc j ht; tci 2 ηt ; t 2� (�γ)g;
37: Γ

0

= Γ
0

[Γ
0

1[fγ
0

j� γ
0

= (Tpre)
�g;

38: end for
39: return Γ0;

106 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Algorithm 8 Path-Flag findEqvDCP (f lag;γ;ηt ;Π
0
)

Inputs: The first parameter is a flag. The second parameter γ: a path whose equivalent has to be found.
If flag = 0, it belongs to N0; if flag = 1, it belongs to N1. The third parameter ηt : the set of pairs of
corresponding transitions. The fourth parameter Π

0

: a set of paths remaining from the original path
cover. If flag = 0, it belongs to N1; if flag = 1, it belongs to N0.
Outputs: Path-flag pair hγ

0

;λi, where γ
0

is a path of N0 or N1 or an empty path. If f lag = 0, γ
0

is a path
of N1. If f lag = 1, γ

0

is a path of N0. The flag λ in the path-flag pair has the following values:
λ = 0) extend γ

0

= γ, the input path, because R
γ
0 (fpv(

�γ
0

)) 6� Rγ(fpv(
�γ)) and R

γ
0 (fpv(

�γ
0

)))

Rγ(fpv(
�γ));

λ = 1) extend γ
0

, which is a path of the other PRES+ (than the PRES+ containing γ) because
R

γ
0 (fpv(

�γ
0

)) 6� Rγ(fpv(
�γ)) and Rγ(fpv(

�γ))) R
γ
0 (fpv(

�γ
0

));

λ = 2) R
γ
0 (fpv(

�γ
0

)); Rγ(fpv(
�γ)), Rγ(fpv(

�γ)); R
γ
0 (fpv(

�γ
0

)): no scope of extension at all;

λ = 3) γ
0

is an equivalent path with same number of pre-places.
λ = 4) γ

0

is an equivalent path and (j�γ
0

j� j�γj � 1).
λ = 5) γ

0

is an equivalent path and (j�γj� j�γ
0

j � 1).

1: Γ
0

= findCandidate (f lag;γ;ηt ;Π
0

; fin);
2: for each γ

0

2 Γ
0 do

3: Case 1 (j�γ
0

j� j�γj= 0):
4: if ((Rγ(fpv(

�γ))� R
γ
0 (fpv(

�γ
0

))) and (rγ(fpv(
�γ)) = r

γ
0 (fpv(

�γ
0

))) then
5: return hγ0

;3i; // equivalent path pair
6: end if
7: if ((Rγ(fpv(

�γ))! R
γ
0 (fpv(

�γ
0

))) then
8: return hγ0

;1i; // extend γ
0

9: end if
10: if ((R

γ
0 (fpv(

�γ
0

))! Rγ(fpv(
�γ))) then

11: return hγ;0i; // extend γ

12: end if
13: Case 2 (j�γ

0

j� j�γj � 1):
14: if ((Rγ(fpv(

�γ))� R
γ
0 (fpv(

�γ
0

))) and (rγ(fpv(
�γ)) = r

γ
0 (fpv(

�γ
0

))) then
15: return hγ;4i; //equivalent path pair where (j�γ

0

j� j�γj � 1)
16: else
17: return hγ;0i; // extend γ

18: end if
19: Case 3 (j�γj� j�γ

0

j � 1):
20: if ((Rγ(fpv(

�γ))� R
γ
0 (fpv(

�γ
0

))) and (rγ(fpv(
�γ)) = r

γ
0 (fpv(

�γ
0

))) then
21: return hγ;5i; //equivalent path pair and (j�γj� j�γ

0

j � 1)
22: else
23: return hγ0

;1i; // extend γ
0

24: end if
25: end for

// Control here if ((R
γ
0 (fpv(

�γ
0

))9 Rγ(fpv(
�γ))) and (((Rγ(fpv(

�γ))9 R
γ
0 (fpv(

�γ
0

)))) 8γ
0

2 Γ
0

26: return h /0;2i; // no extension possible

5.2 An Equivalence Checking Method 107

Algorithm 9 SETOFPATHS findPostPaths (f lag;γ;Π0)
Inputs: If flag = 0, γ is a path of N0; Π

0

is a path cover of N0.
If flag = 1, γ is a path of N1; Π

0

is a path cover of N1,
Π

0

has paths whose equivalence are still to be found.
Outputs: Set of all paths Γ

+
E �Π

0

which follow the path γ

� hence γ can be extended through these paths.
1: SETOFPATHS Γ

+
E = /0;

2: for each γ
0

2Π
0 do

3: if (γ� 2 �γ
0

) then
4: Γ

+
E Γ

+
E [fγ

0

g;
5: end if
6: end for
7: return Γ

+
E ;

Algorithm 11 STRUCT6TUPLE trimPrePaths (f lag;γ;ΓP;Π
0
;Πn;ηt ;Π;E)

Inputs: The first parameter is a flag. The second parameter γ: a path whose extension is sought. If
flag = 0, it belongs to N0, if flag = 1, it belongs to N1. The third parameter ΓP: a set of pre-paths of
the path through which an extension is sought. If flag = 0, it belongs to N0, if flag = 1, it belongs
to N1. The fourth parameter Π

0

: a set of paths remaining from the original path cover. If flag =
0, it belongs to N0; if flag = 1, it belongs to N1. The sixth parameter Πn: a set of non-equivalent
paths. If flag = 0, it belongs to N0; if flag = 1, it belongs to N1. The seventh parameter ηt : the set
of corresponding transition pairs. The eighth parameter Π: a set of paths in the final path cover. If
flag = 0, it belongs to N0; if flag = 1, it belongs to N1. The ninth parameter E : pair of paths of N0 and N1.

Outputs: The output of this function is a six tuple structure. The elements of this structure are as
follows: 1. The set ΓP of trimmed pre-paths of N0 or N1 whose equivalent paths are found in stand-
alone basis. 2.E;3:ηt , 4. Π, 5. Π

0

and 6. Πn.
/* Invoked only after ensuring that extension is possible */
1: for each γ

0

2 ΓP�fγg do
2: hγ;λi (findEqvDCP (f lag;γ

0

;ηt ;Π
0

);
/* λ = 0;1– suggests extension – can be ignored here already being considered for extension */

3: if (λ = 3) then
4: ηt = ηt

S
f h last(γ), last(γ

0

) i g; E E
S
fhγ;γ

0

ig; Π Π
S
fγ

0

g; Π
0

 Π
0

�fγ
0

g; ΓP =

ΓP�fγ
0

g; ηp = ηp[fγ
�;(γ

0

)�g;
5: end if
6: if (λ = 4) then
7: ηt = ηt

S
f h last(γ), last(γ

0

) i g; E E
S
fhγ;γ

0

ig; Π Π
S
fγ

0

g; Π
0

 Π
0

�fγ
0

g; ηp =

ηp[fγ
�;(γ

0

)�g; ΓP = ΓP�fγ
0

g;
8: end if
9: if (λ = 5) then

10: ηt = ηt
S
f h last(γ), last(γ

0

) i g;
E E

S
fhγ;γ

0

ig;
Π Π

S
fγ

0

g;
Π

0

 Π
0

�fγ
0

g;
ηp = ηp[fγ

�;(γ
0

)�g;
ΓP = ΓP�fγ

0

g;
11: end if
12: if (λ = 2) then
13: Πn = Πn[fγ

0

g;
ΓP = /0;

14: end if
15: end for
16: return hΓP;E;ηt ;Πn;Π

0

;Πni;

108 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Algorithm 10 SETofSETSofPATHS findSetOfSetsOfPrePaths (f lag;γ;γ
0
;Π

0
)

Inputs: If flag = 0, γ: path of N0 which triggers extension; γ
0

: path of N0 through which extension of γ

is sought; Π
0

: path cover of N0 whose equivalence are still to be found. If flag = 1, γ: path of N1 which
triggers extension; γ

0

: path of γ of N1 through which extension is sought; Π
0

: path cover of N1 whose
equivalence are still to be found.
Outputs: Set of all possible subsets of pre-paths of γ

0

.
/* Note: Paths leading to γ

0

whose equivalent has been found without extension do not figure in Π
0

. */

1: SETOFPATHS ΓP = /0; SETofSETSofPATHS χP = /0;
/* Obtain in ΓP all pre-paths of γ

0

whose post-place is not same as γ� */
2: for each γ

00

2Π
0 do

3: if ((γ00

)� 2 �γ
0

^ γ� 6= (γ
00

)�) then
4: ΓP ΓP[fγ

00

g;
5: end if
6: end for
7: ΓP = ΓP[fγg;

/* Check if ΓP contains a subset of paths having identical post-place � construct all such subsets
for p 2 Γ�

P call it Ψp � some members of Ψp can be unit sets. */
8: Γ�

P = Γ�
P�fp j p 2 Γ�

p^Γ�
P =2�

γ
0

g;
9: for each p 2 Γ�

P do
10: if (j�pj> 1) then
11: Ψp = f γ

00

2 ΓPj(γ
00

)� = p g;
12: Γ�

P = Γ�
P� (

�p)�;
13: else
14: Ψp = f γ

00

2 ΓPj(γ
00

)� = p g;
15: end if
16: end for

/* Construct the Cartesian product of the members of Ψp, p 2 Γ�
P � call it χP � return χP */

17: χP =�p2Γ�

P
(Ψp);

18: return χP;

Algorithm 12 Path extend (f lag;γ
0
;ΓP)

Inputs: The first parameter is a flag. The second parameter γ
0

: a path through which extension of all
the paths in ΓP is sought. If flag = 0, it belongs to N0; if flag = 1, it belongs to N1. The third parameter
ΓP: a set of pre-paths of γ

0

which together are extended through γ
0

. If flag = 0, it belongs to N0; if flag
= 1, it belongs to N1.
Outputs: The extended path γe = ΓP:γ

0

/* Construct the extended path γe */
1: �γe = /0;

/* Obtain pre-places �γ
0

which are to figure as the parameter of �γe */
2: �γ

0

= �γ
0

�Γ�
P;

/* It contains those pre-places of γ
0

paths leading to which have been found to have equivalent paths
and hence have not been included in ΓP. */
�γe =

�ΓP [
�γ

0

/* indicates the pre-places of the paths being extended through γ
0

.*/
3: /* Obtain post-places */

γ�e = (γ
0

)�

4: /* Obtain last transitions */
�(γ�e) =

� ((γ
0

)�);
5: /* Obtain Rγe */

v = hrΓP(fpv(
�ΓP));rγ

0 (fpv(
�γ

0

))i;

Rγe =
V

γp2ΓP
Rγp(fpv(

�γp))^R
γ
0 (fpv(

�γ
0

))fv= fpv(
�γ

0

)g

/* method of substitution */
rγe = r

γ
0 (fpv(

�γ
0

))fv= fpv(
�γ

0

)g;
/* Obtain rγe */

6: /* Create tree */
7: return γe;

5.2 An Equivalence Checking Method 109

Algorithm 13 SETOFPATHS prepareForExtension (f lag;γ;Π
0
;Π

00
;Πn;ηt ;Π;E)

Inputs: The first parameter is a flag. The second parameter γ: a path whose extension is sought. If flag
= 0, it belongs to N0, if flag = 1, it belongs to N1. The third parameter Π

0

: a set of paths remaining from
the original path cover. If flag = 0, it belongs to N0; if flag = 1, it belongs to N1. The fourth parameter
Π

00

: a set of paths remaining from the original path cover. If flag = 0, it belongs to N1; if flag = 1, it
belongs to N0. The fifth parameter Πn: a set of non-equivalent paths. If flag = 0, it belongs to N0; if flag
= 1, it belongs to N1. The sixth parameter ηt : the set of corresponding transitions pairs. The seventh
parameter Π: a set of paths in the final path cover. If flag = 0, it belongs to N0; if flag = 1, it belongs to
N1. The eighth parameter E : pair of equivalent paths of N0 and N1.
Outputs: The set Π

0

of paths remaining from the original path cover.
1: Π

0

= Π
0

�fγg; /* γ has to be extended */
2: Γ

+
E = findPostPaths (f lag;γ;Π

0

);
/* The function computes the post-paths of γ through which γ can be extended. Such paths include
those which emanate from the post-place γ� (under different guards) or those which emanate from
the post-places of the last transition of γ.*/

3: for each γ
0

2 Γ
+
E do

4: χγ =findSetOfSetsOfPrePaths (f lag;γ;γ
0

;Π
0

);
/*The function computes all the pre-paths of γ

0

other than γ. Some of these may not execute in
parallel (with γ). For example, let fγ;γ1;γ2;γ3g be three such pre-paths of γ

0

; let γ2 and γ3 have an
identical post-place. Hence, γ2 and γ3 cannot execute in parallel because the models are one-safe.
So the pre-paths (including γ) are decomposed into two subsets fγ;γ1;γ2g and fγ;γ1;γ3g.*/

5: Π
0

= Π
0

�fγ
0

g;
6: for each ΓP 2 χγ do
7: ΓP = trimPrePaths (f lag;γ;ΓP;Π

00

;Π
0

;Πn;ηt ;Π;E);
/* Each of the subsets of pre-paths is trimmed of the members (other than γ) which are found
to have equivalence (without any extension) with some path in N0(N1). If it is detected that
such a path may have to be extended before its equivalence is found, then no action is initiated
because they are already under consideration for extension. However, if it is found that the
path does not merit any further consideration (such as extension), it is put in the set Πn;0(Πn;1)
of paths of N0(N1) which may have no equivalent path in N0(N1). The set is not used for
extension. */

8: if (ΓP 6= /0) then
9: γe = extend (f lag;γ;ΓP;γ

0

);
/* The function constructs an extended path γe of the form ΓP:γ

0

. The function computes
those pre-places of γ

0

paths leading to which have been found to have equivalent paths and
hence do not occur in ΓP. Then the function computes the pre-places of γe. In the next two
steps, the function obtains the post-places of γe as those of γ

0

and the last transition of γe as
that of γ

0

. After that, by method of substitution the function computes the condition Rγe of
execution and the data transformation rγe along the extended path γe. Finally, it returns the
extended path γe *

10: Π
0

= Π0�ΓP[fγeg;
11: end if
12: end for
13: end for
14: return Π

0

;

110 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Algorithm 14 STRUCT6TUPLE checkEqDCP(N0;N1)
Inputs: The PRES+ models N0 and N1.
Outputs: The output of this function is a six tuple structure. The elements of this structure are as
follows: 1. Π0: the final path cover of N0, 2. Π1: the final path cover of N1 corresponding to Π0, 3. E :
a set of ordered pairs hδ0;δ1i of concatenation of parallel paths of Π0 and Π1 respectively, such that
δ0 ' δ1. 4.ηt : the set of corresponding transition pairs; 5. Πn;0: the set of paths of N0 for which no
equivalent is found in N1 even with extension. 6. Πn;1: the set of paths of N1 for which no equivalent is
found in N0 even with extension.
1: Let ηp = fhp; p

0

i j p 2 inP0^ p
0

2 inP1^ p
0

= fin(p)g;
Let ηt , the set of pairs of corresponding transitions, be /0;
Π

0

0 = constAllPathsDCP(N0); Π
0

1 = constAllPathsDCP(N1);
Let Π0, Π1,Πn;0, Πn;1 and E be empty;

2: for each α 2Π
0

0 do
3: hβ;λi (findEqvDCP (0;α;ηt ;Π

0

1; fin);
4: if (λ = 3) then
5: ηt = ηt

S
f h last(α), last(β) i g; E E

S
fhα;βig; Π0 Π0

S
fαg; Π

0

0 Π
0

0�fαg; Π1

Π1[fβg; Π
0

1 Π
0

1�fβg; ηp = ηp[fα
�;β�g; /* β' α */

6: else
7: if (λ = 0) then
8: /* extend α */

Π
0

0 = prepareForExtension (0;α;Π
0

0;Π
0

1;Πn;0;ηt ;Πnα
;E); // The extended path got in-

serted and their constituent paths got deleted from Π
0

0 by the above function
9: end if

10: else
11: if (λ = 4) then
12: ηt = ηt

S
f h last(α), last(β) i g; E E

S
fhα;βig; Π0 Π0

S
fαg; Π

0

0 Π
0

0 �fαg;
ηp = ηp[fα

�;β�g; /* α' β and (j�αj� j�βj � 1) */
13: end if
14: else
15: if (λ = 5) then
16: ηt = ηt

S
f h last(α), last(β) i g; E E

S
fhα;βig; Π1 Π1

S
fβg; Π

0

1 Π
0

1 � fβg;
ηp = ηp[fα

�;β�g; /* α' β and (j�βj� j�αj � 1) */
17: end if
18: else
19: if (λ = 1) then
20: Π

0

1 = prepareForExtension (1;β;Π
0

1;Π
0

0;Πn;0;ηt ;Πnβ
;E); /* extend β */

// The extended path got inserted and their constituent paths got deleted from Π
0

1 by the
above function

21: end if
22: else
23: if (λ = 2) then
24: Πn;0 = Πn;0 [fαg; /* no scope for extension - α may have no equivalent paths */ Π

0

0 =

Π
0

0�fαg;
25: end if
26: end if
27: end for /* 8α 2Π

0

0 */
28: Πn;1 = Π

0

1�Π1;
29: Case 1 ((Πn;0 = /0) and (Πn;1 = /0)):

Report “N0 and N1 are the equivalent models.”
break;

Case 2((Πn;0 = /0) and (Πn;1 6= /0)):
Report “N0 v N1 and N1 6v N0 .”
break;

Case 3((Πn;0 6= /0) and (Πn;1 = /0)):
Report “N1 v N0 and N0 6v N1.”
break;

Case 4 ((Πn;0 6= /0) and (Πn;1 6= /0)):
Reports “two models may not be equivalent.”

30: return hΠ0;Π1;E;ηt ;Πn;0;Πn;1i;

5.2 An Equivalence Checking Method 111

Complexity of Algorithm 11 (trimPrePaths): Step 2 calls findEqvDCP func-

tion which takes O((max((jT jlogjT j) ;(jPjlogjPj))+ jF j+ jPj) :jT j:jPj) time as ex-

plained above. Depending on the returned flag value, step 3 or 6 or 9 or 12 is executed.

Step 4 or 7 or 10 updates ηt ;ηp;E and Π by union operation which take O(1) time and

updates Π
0
and ΓP by deletion which takes O(jT j:jPj) time. Step 13 updates Πn which

takes O(jT j:jPj) time. Step 1 involves a loop which iterates jT j:jPj times. Hence, the

overall complexity is O
�
fmax(jT jlogjT j; jPjlogjPj)g+ jF j+ jT j:jPj:jT j2:jPj2

�
.

Functional Specification of Algorithm 12 (extend): The function constructs

an extended path γe of the form ΓP:γ
0
. The function computes those pre-places of γ

0

paths leading to which have been found to have equivalent paths and hence do not

occur in ΓP. Then the function computes the pre-places of γe. In the next two steps,

the function obtains the post-places of γe as those of γ
0

and the last transition of γe as

that of γ
0
. After that, by method of substitution the function computes the condition

Rγe of execution and the data transformation rγe along the extended path γe. Finally, it

returns the extended path γe.

Complexity of Algorithm 12 (extend): Step 1 initializes �γe to empty in O(1)

time. Step 2 computes the pre-places of γe and it takes O(jPj) time. Similarly, steps

3 and 4 compute the post-places and last transition of γe in O(jPj) and O(1) time,

respectively. Step 5 computes Rγe and rγe and it takes O
�

2(jF j)
�

time where, jF j be

the length of the normalized formula. Hence, the overall complexity of this function

is O
�

2(jF j)
�

which dominates the complexity of all other steps.

Functional Specification of Algorithm 13 (prepareForExtension): The

function extends a path γ in all possible ways and updates the original path cover Π
0

following extensions of a path by deleting all the pre-paths and the post-path which

participated in the extension and adding all the extended paths. It first deletes the

path γ which is to be extended from Π
0
. It then calls findPostPaths to obtain

the set of all post-paths of γ in Γ
+
E . For each post-path γ

0
of Γ

+
E , it first deletes γ

0

from Π
0

and then obtains the mutually exclusive sets of pre-paths using the function

findSetOfSetsOfPrePaths. For each of the mutually exclusive subsets ΓP of pre-

paths, the function then calls trimPrePaths to remove those members which have

equivalent paths in the other model. In the next step, it calls extend function to obtain

an extended path of the form (ΓP):γ
0
. It then updates the path cover Π

0
by deleting

the pre-paths of ΓP from Π
0

and adding the extended path γe. Finally,the function

112 Chapter 5 DCP Induced Path Based Equivalence Checking Method

prepareForExtension returns Π
0
.

Complexity of Algorithm 13 (prepareForExtension): Step 1 takes O(jT j:jPj)

time. Step 2 calls the function findPostPaths which takes O
�
jPj2:jT j

�
time as ex-

plained above. For each of the post-paths in Γ
+
E , Step 4 calls findSetOfSetsOfPrePaths

function which also takes O
�

2
�

jT j
2

��
time as explained above. Step 5 takes O(jT j:jPj)

time. For each set of pre-paths, Step 7 invokes trimPrePaths function and it takes

O
�
fmax(jT jlogjT j; jPjlogjPj)+ jF j+ jT j:jPjg:jT j2:jPj2

�
as explained above. Step 8

checks a condition in O(1) time. If the condition is true, step 9 calls the extend

function which takes O
�

2jF j
�

time. Then, in step 10, the deletion operation takes

O
�
jT j2:jPj2

�
time and addition of γe takes O(1) time. The loop in step 6 iterates

O(jT j:jPj) time. Hence, the overall complexity of the inner loop (steps 6–12) is

O
�

2(jF j):jT j:jPj
�

. The loop involved in step 3 also iterates O(jT j:jPj) time. There-

fore, the overall complexity is O
���

(2
jT j
2 +2jF j

�
:jT j:jPj

�
:jT j:jPj

�
.

Functional Specification of Algorithm 14 (checkEqDCP): The functional spec-

ification of this module is given in section 5.2.

Complexity of Algorithm 14 (checkEqDCP): In step 1, construction of ηp takes

O(jPj) time. In the same step the function constructs all the paths for the two PRES+

models in O((jT jjPj)
jPj:(jT j2)) as given in Chapter 4. Step 3 uses findEqvDCP function

and takes O((fmax(jT jlogjT j; jPjlogjPj)g+ jF j) :jT j:jPj). time as explained before.

The complexity of each iteration of the loop of step 2 is as follows. Checking of proper

condition on the flag λ (steps 4;7;11;15;19;23) is O(1). Statements 5;12;16;24 in-

volves union operation and deletion from sets Π
0

0, Π
0

1 which take O(1) and O(jT j:jPj)

times, respectively. Hence for cases λ = 2;3;4;5, time taken is O(jT j:jPj). Cases

λ = 0 and 1, the function prepareForExtension takes:

O
��

2(
jT j
2)+2jF j):jT j:jPj

�
jT j:jPj

�
.

Hence the body of the loop of step 2 takes:

O
��

2(
jT j
2)+2jF j):jT j:jPj

�
jT j:jPj

�
time. The loop iterates O(jT j:jPj) time. Hence the

complexity is O ((2(
jT j
2)+ 2jF j):jT j:jPj).jT j2:jPj2). Step 28 takes O(jT j2:jPj2) time.

From step 29, there are four cases and each case takes O(1) time. Hence, the over-

all complexity of the checkEqDCP function is O ((2(
jT j
2)+ 2jF j):jT j:jPj).jT j2:jPj2) +

O((jT jjPj)
jPj:(jT j2)).

5.2 An Equivalence Checking Method 113

5.2.3 Soundness of the equivalence checking algorithm

The soundness proof hinges upon the following two lemmas.

Lemma 5. Let C be a parallel combination of concatenated paths which is of the

form γ1jjγ2jj : : : jjγt such that �(γi)\
�(γ j) = /0, 1 � i 6= j � t. For any i, 1 � i � t, let

the concatenated path γi be of the form C
0

i:γ
0

i, where γ
0

i is also a concatenated path

contained in γi and C
0

i = fγ
0

1;ijjγ
0

2;ijj : : : jjγ
0

ni;ig is a set of parallel concatenated paths

such that (C
0
)� = �γ

0

i. Then (C�fγ
0

ig):γ
0

i �C;1� i� t.

Proof. C�fγ
0

ig= γ1jjγ2jj : : : jjγi�1jj(γ
0

1;ijjγ
0

2;ijj : : : jjγ
0

n;i)jjγi+1jj : : : jjγt

=(γ1jjγ2jj : : : jjγi�1jjγi+1jj : : : jjγt)jj(γ
0

1;ijjγ
0

2;ijj : : : jjγ
0

n;i) (by commutativity of parallel paths)

Hence,

(C�fγ
0

ig):γ
0

i = f(γ1jjγ2jj : : : jjγi�1jjγi+1jj : : : jjγt)jj(γ
0

1;ijjγ
0

2;ijj : : : jjγ
0

n;i)g:γ
0

i

= (γ1jjγ2jj : : : jjγi�1jjγi+1jj : : : jjγt)jjf(γ
0

1;ijjγ
0

2;ijj : : : jjγ
0

n;i):γ
0

ig

= (γ1jjγ2jj : : : jjγi�1jjγi+1jj : : : jjγt jjγi) =C (by commutativity pf parallel paths).

Lemma 6. If Π
0

0 (Π
0

1) is a path cover of N0 (N1) and the function checkEqDCP

(Algorithm 14) reaches step 29, then so is Π0 (Π1).

Proof. The lemma is proved for Π0; proof for Π1 follows identically. Consider any

computation µ0;p of an out-port p of N0. If µ0;p can be expressed as a concatenation

of parallelizable paths taken from Π0, then we are done. Since Π
0

0 is a path cover

of N0, µ0;p can be expressed as a concatenation, C
0

0 say, of parallelisable paths taken

from Π
0

0. The function constructConcatenatedParallelizablePath (Algorithm

15) constructs the (desired) concatenation C0 of parallelisable paths of Π0 from C
0

0.

The inputs to this function are C
0

0 and the set E of pairs of equivalent paths of N0 and

N1 obtained from the equivalence checking phase. The output of the function is C0.

The function starts by initializing the concatenation C0 to empty. Let last(C
0

0)

(last(C0)) represent the last set of parallelisable paths of C
0

0 (C0). To start with,

last(C
0

0) is a singleton. Dynamically, for each path γ
0

in last(C
0

0), the function checks

whether γ
0
occurs as the first member of some pair in E. If so, the function updates C

0

0

by deleting γ
0
from C

0

0 (i.e., from last(C
0

0)) and concatenating γ
0
with C0 (i.e., ahead of

C0). Otherwise, the function searches for an extended path γe containing γ
0
, occurring

as the first member of some pair in E. The fact that such a path surely exists follows

114 Chapter 5 DCP Induced Path Based Equivalence Checking Method

from the fact that the function checkEqDCP (Algorithm 14) reaches step 29 and hence

the loop (steps 2 to 27) of the function terminates, i.e., Π
0

0 is rendered empty; it is

given that Πn;0 is /0; hence, every path of Π
0

0, either individually or in extended form,

has been put as a first member in E. On finding γe, the function updates C
0

0 by deleting

all the paths of Π
0

0 occurring in γe from C
0

0; it then updates C0 by concatenating γe with

C0.

Algorithm 15 PATH constructConcatenatedParallelizablePath (C
0

O;E)
Inputs: The first parameter is a concatenated parallelisable paths of Π

0

0 such that C
0

0 � µ0;p.
The second parameter E : pair of paths of N0 and N1 obtained from equivalence checking phases.

Outputs: The output of this function is a concatenation of parallelisable paths of Π0 such that C0 �C
0

0.
1: C0 = /0;
2: for each γ

0

2 last(C
0

0) do
3: if (γ

0

= first member of some pair in E) then
4: C

0

0 =C
0

0�fγ
0

g;
5: C0 = γ

0

:C0;
6: else
7: Let γe be the first member of E that contains γ

0

;
Let γe be (γe;1 k γe;2 k : : : k γe;l):γ

0

;
Let fγeg be γe;1jjγe;2jj : : : jjγe;l ;

8: for each γ
00

2 fγeg do
9: C

0

0 =C
0

0�fγ
00

g;
10: end for
11: C0 = γe:C0;
12: end if
13: end for
14: return C0;

The fact that C0 comprises only the first members of the pairs in E is clear from the

conditions associated with the if statement in step 3 and the assignment in steps 5 and

11 of (Algorithm 15) which are the only steps where addition to C0 takes place; so,

for any paths of Π
0

0, the function has found an equivalent path, either for itself or after

extending it. The first members of E belong to Π0. Hence, C0 contains only paths of

Π0.

Now, it is required to show that C0 � C
0

0. Let C
0

0;i (C0;i) be the value of C
0

0 (C0)

after the ith iteration of the loop (steps 2 – 13); note that C
0

0;0 = C
0

0 and C0;0 = /0 are

the initial values of C
0

0 and C0, respectively. Let the loop (steps 2 – 13) iterate f + 1

times. We show that C
0

0 �C
0

0;i:C0;i;0 � i � f . In the loop, C
0

0 shrinks in size (in steps

4 and 9), by losing its paths from its last set last(C
0

0). So when the loop terminates,

last(C
0

0) must be empty and hence C
0

0; f = /0. Hence, once the above equivalence is

proved, for i = f , C
0

0 � C
0

0; f :C0; f � C0; f � C0 and we have the desired C0. We now

show the equivalence C
0

0 �C
0

0;i:C0;i;0� i� f , by induction on i.

5.2 An Equivalence Checking Method 115

Basis (i = 0): C
0

0;0:C0;0 �C
0

0;0: /0�C
0

0;0 �C
0

0.

Induction hypothesis: Let 8i;0 � i � k, the statement C
0

0 � C
0

0;i:C0;i be true, for any

k < f .

Induction step:

Case 1: Let the (k+ 1)th iteration find the condition associated with step 3 to

hold, i.e., γ
0

occurs as the first member of some pair in E whereupon it

goes through steps 4 and 5. From step 4, C
0

0;k+1 = C
0

0;k �fγ
0
g and from

step 5, C0;k+1 = γ
0
:C0;k, where γ

0
has an equivalence with some path in N1

(by construction of E). From the definition of set of parallelisable paths

(Definition 18) and Lemma 5,

C
0

0;k+1:C0;k+1 � (C
0

0;k�fγ
0
g):(γ

0
:C0;k) (by steps 4 and 5 of Algorithm 15)

� ((Pre f ix(C
0

0;k):last(C
0

0;k))�fγ
0
g):(γ

0
:C0;k)

(where Pre f ix(C
0

0) is the concatenation C
0

0 minus last(C
0

0))

� (Pre f ix(C
0

0;k):(last(C
0

0;k)�fγ
0
g)):(γ

0
:C0;k)

(since γ
0
2 last(C

0

0;k), deleting γ
0
from C

0

0;k only affects last(C
0

0;k))

� (Pre f ix(C
0

0;k):((last(C
0

0;k)�fγ
0
g):γ

0
)):C0;k

(by associativity of concatenation)

� (Pre f ix(C
0

0;k):(last(C
0

0;k))):C0;k

(by Lemma 5 applied on last(C
0

0;k) which is a

set of parallel paths containing a single path γ
0
)

�C
0

0;k:C0;k

�C
0

0 (by induction hypothesis).

Case 2: Let the (k+1)th iteration find the negation of the condition associated

with step 3 to hold. Let the concatenated path γe containing γ
0

found in

step 7 be of the form (γe;1jjγe;2jj : : : jjγe;l):γ
0
).

After the loop (steps 8 – 10),

C
0

0;k+1 =C
0

0;k�fγeg: (5.1)

From lemma 5, applied repeatedly for each execution of step 9 in the loop,

we have,

C
0

0;k � (C
0

0;k�fγeg):γe �C
0

0;k+1:γe:(f rom (5:1)) (5.2)

116 Chapter 5 DCP Induced Path Based Equivalence Checking Method

After execution of step 11,

C0;k+1 � γe:C0;k: (5.3)

Hence, C
0

0;k+1:C0;k+1 � (C
0

0;k�fγeg):(γe:C0;k) (from 5.1 and 5.3)

� f(C
0

0;k�fγeg):γeg:C0;k (associativity of concatenation)

�C
0

0;k:C0;k (from 5.2)

�C
0

0 (by induction hypothesis)

Theorem 8. If the function checkEqDCP (Algorithm 14) reaches step 30 and (a)

returns Πn;0 = /0, then N0 v N1 and (b) if it returns Πn;1 = /0, then N1 v N0.

Proof. We give the proof of part (a) below; that of part (b) follows identically. From

Lemma 6, we can conclude that Π0 gives a path cover of N0. Hence, for any out-port p

of N0, any computation µ0;p can be represented as a concatenation, Q0;0:Q0;1: : : : :Q0;l

say, of sets of parallel paths, such that p 2Q�
0;l ,

�Q0;0 � inP0, Q0;l is a singleton fαlg,

say, and Q0;i contains only paths from Π0, 0� i� l. Whenever a path α is introduced

in Π0 (only in steps 5 and 12 of Algorithm 14) an entry hα;βi is introduced in E (with

α ' β). Hence, for any path α 2 Q0;i for some i, there exists a path β of N1 such that

hα;βi 2 E. Hence, we can construct a concatenation, C1;p0 say, of parallel paths of N1

such that C1;p0 = Q1;0:Q1;1: : : : :Q1;l , where Q1;i = fβ j hα;βi 2 E and α 2 Q0;ig. We

show that (1) C1;p0 is a computation of fout(p) in N1 and (2) C1;p0 ' µ0;p.

Proof of (1): C1;p0 is alternatively rewritten as a sequence of sets of places, namely,

h�Q1;0;
�Q1;1, : : : ;�Q1;i;

�Q1;i+1; : : : ;
�Q1;l;Q�

1;li. It is required to prove (a)�Q1;0�

inP1, (b) fout(p) 2 Q�
1;l , (c)Q

�
1;i+1 = (Q�

1;i)
+;0� i� l.

Proof of (a): A pair hα;βi of paths is put in E by the function checkEqDCP

(Algorithm 14) (steps 5,12 and 16) if they are ascertained to be equivalent

by the function findEqvDCP (Algorithm 8); the latter will examine their

equivalence only if they are found to satisfy the property �α � inP0)
�

β � inP1 and �β = fin(
�α) by the function findCandidate (Algorithm 7

– step 7). Hence, �Q0;0 � inP0)
�Q1;0 � inP1 and �Q1;0 = fin(

�Q0;0).

Proof of (b): By construction of C1;p0 from µ0;p, Q1;l = fβlg is a singleton and

if Q0;l = fαlg, then hαl;βli 2 E (by construction of C1;p0). Again, by a

5.2 An Equivalence Checking Method 117

similar reasoning as in proof of (a), we find that findCandidate (Algo-

rithm 7) ensures in steps 26-30, that α�
l 2 outP0) β�l (=Q�

1;l)2 fout(α
�
l) =

fout(p).

Proof of (c): Given C1;p0 = Q1;0:Q1;1: : : : :Q1;l . We construct the corresponding

sequence of subsets of marking ρ = hM0;M1; : : : ;Ml;Ml+1i such that

PM0 =
�C1;p0 (5.4)

8i;0� i� l;PMi+1 = fp j p 2 Q�
1;i\

�Q1;i+1g : : :(a) (5.5)

[fp j p 2 Q�
1;i�

�Q1;i+1g : : :(b) (5.6)

[fp j p 2 PMi �
�Q1;ig : : :(c) (5.7)

PMl = Q�
1;l (5.8)

Now, C1;p0 is a computation of N1 if ρ is a computation of p0 (by alter-

nate definition of computation, section 3.2); hence it is required to prove

(I)PM0 � inP1, (II)PMl+1 = fp0g, (III)PMi+1 = PM+
i
;0� i < l.

Proof of (I) and (II): (I) and (II) are already proved in part (a) and part

(b).

Proof of (III): If p2PMi+1 by clause 5.5(a) or 5.5(b), then p2Q�
1;i, where

Q1;i = TMi , the set of enabled transitions from marking Mi. If p 2

PMi+1 by clause 5.5(c), then p 2 PMi and p =2 �Q1;l) p 2 PMi and p =2

TMi . Thus, the set PMi+1 of places satisfies the first clause of definition

(Definition 1) of place successor marking. Hence PMi+1 = PM+
i

.

Proof of (2): In C1;p0 , 8p1 2 Q�
1;i , 0 � i � l, there exists a concatenated path γp1

of the form Q(p1)
1;0 :Q(p1)

1;1 : : : : :Q(p1)
1;i such that (Qp1

1;i)
� = fp1g (by Definition 19 of

concatenated paths in subsection 4.1.1). The path γp1 has a condition of execu-

tion RQ1;0
γp1

(fpv(
�γp1)) and the data transformation rQ1;0

γp1
(fpv(

�γp1)) (as explained

in subsection 4.1.1). Similarly, in µ0;p, 8p0 2Q�
0;i, 0� i� l, we can have a path

γp0 . So, to prove that C1;p0 ' µ0;p, we have to show that 8i;0� i� l, 8p1 2Q�
1;i,

9p0 2 Q�
0;i such that hp0; p1i 2 ηp, RQ1;0

γp1
(fpv(

�γp1)) � RQ0;0
γp0

(fpv(
�γp0)) and

rQ1;0
γp1

(fpv(
�γp1)) = rQ0;0

γp0
(fpv(

�γp0)) by induction on i.

118 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Basis (i = 0): 8p1 2Q�
1;0;9β 2Q1;0, such that β� = fp1g. So, γp1 = β. By con-

struction of C1;p0 from µ0;p, 9α;hα;βi 2 E and α 2 Q0;0. Let fp0g be α�;

so α = γp0 . As hα;βi 2 E, Rα(fpv(
�α) � Rβ(fpv(

�β) and rα(fpv(
�α) =

rβ(fpv(
�β) (ensured by the function findEqvDCP (Algorithm 8)). There-

fore, RQ1;0
γp1

(fpv(
�γp1))� RQ0;0

γp0
(fpv(

�γp0)) and rQ1;0
γp1

(fpv(
�γp1)) = rQ0;0

γp0
(fpv(

�γp0));

also, hp0; p1i 2 ηp as ensured by checkEqDCP.

Induction Hypothesis: Let 8i;0� i� k < l, 8p1 2Q�
1;i;9p0 2Q�

0;i such that the

properties RQ1;0
γp1

(fpv(
�γp1)) � RQ0;0

γp0
(fpv(

�γp0)),

rQ1;0
γp1

(fpv(
�γp1)) = rQ0;0

γp0
(fpv(

�γp0)) and hp0; p1i 2 ηp hold.

Induction Step: Required to prove that 8p1 2 Q�
1;k+1, 9p0 2 Q�

0;k+1 such that

RQ1;0
γp1

(fpv(
�γp1)) � RQ0;0

γp0
(fpv(

�γp0)), rQ1;0
γp1

(fpv(
�γp1)) =

rQ0;0
γp0

(fpv(
�γp0)) and hp0; p1i 2ηp. Let γp1 =C

0

1:β, where β�= fp1g and C
0

1

is a set of parallelisable paths such that (C
0

1)
�= �β. Let C

0

1 = β1jjβ2jj : : : jjβt1 .

Now, 9α;hα;βi 2 E (by construction of C1;p0 from µ0;p). Therefore, as en-

sured by the function findEqvDCP (Algorithm 8) Rα(fpv(
�α))�Rβ(fpv(

�β)),

rα(fpv(
�α)) = rβ(fpv(

�β)) and hα�;β�i. Let p0 be α�. γp0 = C
0

0:α, where

C
0

0 is a set of parallelisable paths of the form α1jjα2jj : : : jjαt1 such that

hαi;βii 2 E;1� i� t1. Therefore,

RQ1;0
γp1

(fpv(
�γp1))

�
Vt1

i=1 Rβi(fpv(
�βi))^ Rβ(fpv(

�β))fv1= fpv(
�β)g

where, v1 = hrβ1(fpv(
�β1));rβ2(fpv(

�β2)); : : : ;rβt1
(fpv(

�βt1))i)

�
Vt1

i=1 Rαi(fpv(
�αi))^Rα(fpv(

�α))fv0= fpv(
�α)g

where, v0 = hrα1(fpv(
�α1));rβ2(fpv(

�α2)); : : : ;rαt1
(fpv(

�αt1))i;

� RQ0;0
Cp0

(fpv(
�Cp1)).

Since by induction hypothesis rα j(fpv(
�α j)) = rβ j(fpv(

�β j)),

1� j � t1, and Rαi(fpv(
�αi))� Rβi(fpv(

�βi)),

since Rβ(fpv(
�β))� Rα(fpv(

�α)))

Similarly, rQ1;0
γp1

(fpv(
�γp1))

= rβ(fpv(
�β))fv1= fpv(

�β)g

= rα(fpv(
�α))fv0= fpv(

�α)g

since, hα;βi 2 E and v1 = v0 by induction hypothesis

= rQ0;0
Cp0

(fpv(
�Cp0)).

5.3 Experimental Results 119

5.3 Experimental Results

The implementation of the techniques described in this chapter is referred to in the

sequel as the DCPEQX module. The experimentation in this chapter is in continuation

of the experimentation taken up in the previous chapter where paths in a path cover of

PRES+ models were constructed as a precursor to applying the equivalence checking

by invoking DCPEQX. Accordingly, experimentation has been carried out along two

courses — one using hand constructed models and the other using models constructed

by the same automated model constructor. Preparation of the example suite remains

the same as that mentioned in Chapter 4. For checking equivalence between two paths,

we have used the normalizer reported in [121].

5.3.1 Experimentation using hand constructed models

We have tested our DCPEQX module on the ten sequential examples as reported in Sec-

tion 4.3 (Table 4.1) which are transformed using the SPARK compiler. The compiler

takes as input a sequential program and generates its optimized version. The prepara-

tion of the examples and the set of transformations applied on each of them are already

discussed in Chapter 4.

A typical output of the DCPEQX module for the MODN example is given in Figure 5.4.

(The details of the MODN examples and the corresponding models are given in Figures

4.12, 4.11 and 4.13 of Chapter 4.) The output depicts the condition of execution and

the data transformation for each path in normalized form. It is also to be noted that

for the MODN example, path extension occurs twice in model 1 � once for path 10 and

next time for path 14. Lines 20�32 of the output from DCPEQX indicate the following.

For path 10 of model 1, the condition of execution (0� 1 � n+ 1 � s < 0) is reported

(as output line 21); the corresponding path in model 2 is also designated as path 10;

its condition of execution is (0� 1 � n+ 1 � b >= 0)^ (0� 1 � n+ 1 � s < 0) (output

line 25). Therefore, it is identified that path extension of path 10 of model 1 is needed

(output line 23). The condition of execution of the concatenation of path 10 and path

11 of model 1 matches with the condition of execution of path 10 of model 2 reported

in output lines 27 -28; however, the data transformation is not matched as reported

(in output line 28) because the number of pre-places for the concatenated path for

120 Chapter 5 DCP Induced Path Based Equivalence Checking Method

model 1 is three corresponding to the variables n;s and a; in contrast, the number of

pre-places for path 10 of model 2 is two corresponding to the variables n and s. The

path extension is reported to be needed (in output line 29) . Concatenation of path

10 and path 11 of model 2 results in a concatenated path after path extension and this

concatenated path is equivalent to the concatenation of paths 10 and 11 of model 1

both having identical data transformation a := 0+ 1 � a+ 1 � 0� 1 � n+ 1 � s (output

lines 31-32). The first path extension output is depicted in lines 20-32 in Figure 5.4.

Extension is carried out similarly for path 14.

Table 5.1 depicts our observations made through this line of experimentation vis-

a-vis the performance of FSMDEQX (PE) module [14]. Both FSMDEQX (PE) module

and DCPEQX module could establish equivalence for all the examples listed in the table

except for the MINANDMAX-S example for which the transformed version is obtained

by applying the loop swapping transformation which cannot be handled by the equiv-

alence checker FSMDEQX (PE). The column designated Extension (DCPEQX) indicates

that in our method, for five examples, the costly path extension is needed. In com-

parison, FSMDEQX (PE) needs path extension in three more cases (column Extension

(FSMDEQX (PE))). The reason is that the PRES+ model being value based captures

data independence more vividly incorporating parallelism in the model structure over-

riding the control flow of the input program wherever possible whereas the FSMD

model retains the control dependence of the input program. The columns “FSMDEQX

(PE) Time” and “DCPEQX Total Time” record the times taken by the FSMD equiv-

alence checking method and by the DCPEQX module, respectively. They include the

path construction times also. The FSMD equivalence checking is found to be slightly

faster than our PRES+ equivalence checking. An interesting observation in this regard

is that for FSMD models, the path construction overhead is negligible because unlike

PRES+ models, they do not have any thread level parallelism. More specifically, path

construction for FSMD models involves only identification of the cut-points, which

are essentially the control flow bifurcation points. In contrast, for PRES+ models, the

path construction process involves not only identification of the back edges but also

keeping track of the sequence of maximally parallelisable transitions through a (for-

ward) token tracking execution and identification of the dynamic cut-points which are

used to construct the path using a backward traversal of the sequence. The column

“DCPEQX Path Const Time” reproduces the observations recorded in Table 4.2; the en-

tries in the column “DCPEQX EqChk Time” are obtained by subtracting the sum of two

5.3 Experimental Results 121

columns under “DCPEQX Path Const Time” from those in the column “DCPEQX Total

Time”. By comparing the figures in the column “DCPEQX EqChk Time” with those in

“FSMDEQX (PE) Time”, we notice that the DCPEQX module actually needs less time

than the FSMDEQX (PE) module for the equivalence checking phase in almost all the

cases; for the examples namely, MODN, GCD, PERFECT, DCT, LCM, LRU, PERFECT

and PRIMEFAC, the benefit is about two times; however, for the example TLC, the per-

formance gain is as high as 18 times.

We have also tested our DCPEQX module on five sequential examples which are

transformed using two thread level parallelizing compilers namely, PLuTo and Par4All.

These compilers take a sequential program as an input and generate its parallel coun-

terpart. The preparation of the examples as well as the set of transformations applied

are already discussed in Chapter 4, Section 4.3.

Example Paths Extension Extension FSMDEQX (PE) DCPEQX

(FSMDEQX (PE)) (DCPEQX) Time (µs) Path Const Time (µs) EqChk Total

Orig Transf Orig Transf Time (µs) Time (µs)

MODN 17 17 YES YES 16001 5532 4834 8506 18872

SUMOFDIGITS 9 9 YES YES 8000 1051 1168 6288 8507

PERFECT 13 9 YES YES 8456 2929 1679 5077 9685

GCD 16 15 YES NO 12567 6561 3240 3957 13758

TLC 28 23 YES YES 16121 7355 8532 862 16749

DCT 1 1 NO NO 2102 796 785 2054 3635

LCM 16 15 YES NO 16231 6693 3825 6224 16742

LRU 18 18 YES NO 20001 6345 6783 11435 24563

PRIMEFAC 10 10 YES YES 6352 1065 1217 5505 7787

MINANDMAX-S 21 21 � NO � 6234 6225 5936 18395

Table 5.1: DCP induced equivalence checking times for hand constructed models of

sequential examples

Example Paths-Orig Path-Transf DCPEQX Time (µs)

PLuTo Par4All PLuTo Par4All

BCM 3 3 3 4659 4659

MINANDMAX-P 21 21 21 24335 24335

LUP 35 34 34 33633 31235

DEKKER 17 17 17 45428 44952

PATTERSON 12 12 12 23231 23231

Table 5.2: DCP induced equivalence checking times for hand constructed models of

parallel examples

122 Chapter 5 DCP Induced Path Based Equivalence Checking Method

##################### PATH EQUIVALENCE ##

1 For Path 1 MODEL 1 ...THE CONDITION IS -- THE TRANSFORMATION IS s := 0

2 PATH 1 OF MODEL 2 IS MATCHED WITH PATH 1 OF MODEL1

3 For Path 2 MODEL 1 ...THE CONDITION IS -- THE TRANSFORMATION IS i := 0

4 PATH 2 OF MODEL 2 IS MATCHED WITH PATH 2 OF MODEL1

5 For Path 3 MODEL 1 ...THE CONDITION IS -- THE TRANSFORMATION IS a := 0 + 1 * a

6 PATH 3 OF MODEL 2 IS MATCHED WITH PATH 3 OF MODEL1

7 For Path 4 MODEL 1 ...THE CONDITION IS -- THE TRANSFORMATION IS b := 0 + 1 * b

8 PATH 4 OF MODEL 2 IS MATCHED WITH PATH 4 OF MODEL1

9 For Path 5 MODEL 1 ...THE CONDITION IS -- THE TRANSFORMATION IS n := 0 + 1 * n

10 PATH 5 OF MODEL 2 IS MATCHED WITH PATH 5 OF MODEL1

.

20 For Path 10 MODEL 1...

21 THE CONDITION IS (0 - 1 * n + 1 * s < 0)

22 THE TRANSFORMATION IS k : = 0 + 1 * a + 1 * 0 - 1 * n + 1 * s

23 PATH EXTENSION......

24 For Path 10 in MODEL 2...

25 THE CONDITION IS (0 - 1 * n + 1 * s < 0)AND(0 - 1 * n + 1 * b >= 0)

26 THE TRANSFORMATION IS l := 0 - 1 * n + 1 * s

23 For Path 11 MODEL 1...

24 THE CONDITION IS (0 - 1 * n + 1 * b >= 0)

25 THE TRANSFORMATION IS a := 0 + 1 * a + 1 * l

26 PATH 10 EXTEND THROUGH PATH 11 FOR MODEL 1

27 THE CONDITION IS (0 - 1 * n + 1 * s < 0)AND(0 - 1 * n + 1 * b >= 0)

28 MATCHED WITH PATH 10 OF MODEL 2 THE TRANSFORMATION MISMATCH..

29 PATH EXTENSION

30 PATH 10 OF MODEL 2 WITH PATH 11 OF MODEL 2 THE TRANSFORMATION IS

31 a := 0 + 1 * a + 1 * 0 + 1 * n + 1 * s

32 PATH 10 AND PATH 11 OF MODEL 2 IS MATCHED WITH PATH 10 AND PATH 11 OF MODEL1

.

46 PATH 16 OF MODEL 2 IS MATCHED WITH PATH 16 OF MODEL1

47 For Path 17 ...THE CONDITION IS -- THE TRANSFORMATION IS i := 1 + 1 * i

48 PATH 17 OF MODEL 2 IS MATCHED WITH PATH 17 OF MODEL1

49 <<<<<<<<<<<<<<<<< THE TWO MODEL ARE EQUIVALENT >>>>>>>>>>>>>>>>>

500 ###################### Verification Report ##############################

51 Exec time is 0 sec and 18872 microsecs

52 ##

Figure 5.4: Output of DCPEQX module for the MODN example

5.3 Experimental Results 123

The last two columns of Table 5.2 show the equivalence checking times for the

parallelizing compilers PLuTo and Par4All. It is to be noted that the costly path exten-

sion procedure is not needed for the above parallel examples. The FSMD equivalence

checking method fails to validate these transformations because thread level paral-

lelism is not supported by FSMD models.

5.3.2 Experimentation using the automated model constructor

As mentioned in Chapter 4, the experimentation using automated model constructor

has been considered only for such scenarios where both original and transformed ver-

sions of the programs are sequential in nature. The experimental set up is exactly sim-

ilar to what we have already discussed in Chapter 4. Table 5.3 records the correspond-

ing observations; for all examples listed in the table the source and the transformed

programs were successfully declared to be equivalent by the DCPEQX module. It may

be noted that under the column FSMDEQX Time, there are two sub-columns PE and

VP; the former corresponds to the runtimes recorded for the path extension FSMDEQX

module [74] and the latter to those recorded for the value propagation based FSMDEQX

module [20]. For the MINANDMAX-S example, both FSMDEQX (PE) and FSMDEQX (VP)

fail because the loop swapping transformation is involved. The last five rows involve

code motion across loops (and indicated by the CM) suffix.

From Table 5.1 and the first ten rows of Table 5.3, until MINANDMAX-S, we observe

that path extension is needed for automatically constructed models exactly in those

cases where it is needed for the manually constructed ones. By comparing the en-

tries in the column “DCPEQX Total Time” of Table 5.3 with those in the corresponding

column in Table 5.1 we notice that the total time needed for equivalence checking

time is proportional to the model size. Unlike the observations recorded with manu-

ally constructed models, for the automated models the times taken by the equivalence

checking phase of the DCPEQX module are found to be comparable with those recorded

for the FSMDEQX model for most of the examples; for the remaining ones, however, no

definitive conclusions can be drawn in favor of one module over the other.

124 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Example Paths Extension Extension FSMDEQX Time (µs) DCPEQX

(FSMDEQX) (DCPEQX) PE VP Path Const Time (µs) EqChk Total

Orig Transf Orig Transf Time (µs) Time (µs)

MODN 43 42 YES YES 16001 15892 11345 10863 15581 37789

SUMOFDIGITS 28 9 YES YES 8000 8000 6341 5834 13302 25477

PERFECT 100 27 YES YES 8456 8372 33432 10943 9299 53674

GCD 52 49 YES NO 12567 12563 15534 13426 12472 41432

TLC 103 52 YES YES 16121 14230 195938 86723 5795 288671

DCT 14 14 NO NO 2102 1902 18913 16724 6717 42354

LCM 52 49 YES NO 16231 16174 16534 14426 12285 43245

LRU 178 178 YES NO 20001 19872 447174 387155 21456 855785

PRIMEFAC 49 26 YES YES 6352 6149 11116 10730 5568 27414

MINANDMAX-S 56 51 � NO � � 12544 12230 15989 40763

DIFFEQ 44 34 YES NO 42500 42389 16342 11652 36195 64189

DHRC 121 107 YES YES 188300 186729 4494567 4092345 185674 8772586

PRAWN 782 782 YES NO 293400 291676 7508172 7023523 293876 78037279

IEEE 754 430 415 YES YES 195741 186824 2976048 2975124 195330 6146482

BARCODE 884 1024 YES YES 125189 125189 3019502 6174098 123175 9316779

QRS 178 156 YES NO 20001 19346 447174 387155 21456 855785

EWF 540 525 YES YES 34368 33413 2046828 1261312 36524 3344664

LCM-CM 52 49 – NO � 16035 16534 14426 12285 43245

IEEE 754-CM 430 415 – YES � 176572 2976048 2975124 195330 6146482

PERFECT-CM 100 27 – YES � 7278 33432 10943 9299 53674

LRU-CM 178 178 – NO � 18549 447174 387155 21456 855785

QRS-CM 178 156 – NO � 19234 447174 387155 21456 855785

Table 5.3: DCP induced equivalence checking times for sequential examples using

automated model constructor

5.3.3 Experimental results after introducing errors

Finally, we take the original behaviours for some examples taken from the sequential

and parallel example suites and manually inject some errors in the code level. The

objective of this line of experimentation is to check the efficacy of the equivalence

checker in detecting incorrect code motions. We have introduced the following types

of (both instruction level and thread level) erroneous code transformations:

Type 1: non-uniform boosting up code motions from one branch of an if-then-else

block to the block preceding it which introduce false-data dependencies in the

other branch of the if-then-else block; this has been injected in the GCD and MODN

examples.

Type 2: non-uniform duplicating down code motions from the basic block preceding

an if-then-else block to one branch of the if-then-else block which remove data

dependency in the other branch; this has been injected in the TLC example.

Type 3: mix of some correct code motions and incorrect code motions in LCM and

5.3 Experimental Results 125

LRU examples.

Type 4: data-locality transformations which introduce false data-locality in the body

of the loop in MINANDMAX-P and PATTERSON examples.

For each of these examples, the PRES+ models are constructed both manually and by

the automated model constructor using the same procedures as elaborated in previous

chapter. All the erroneous programs are given in Appendix A. In the following exam-

ple, we discuss some important observations regarding our experimentation with the

example MODN with Type 1 error.

Example 16. Figure 4.12(a) in Chapter 4 depicts the source program of MODN which

is transformed using SPARK compiler; the trimmed version of the optimized code is

reproduced in Figure 5.5(a). Figure 5.5(b) depicts the erroneous code. During opti-

mization using SPARK compiler, the statement t = (l�n) is uniformly moved from the

segment preceding if-else basic block to both if block and else block. How-

ever, in the erroneous code in Figure 5.5(b), the statement t = (l�n) is non-uniformly

moved only into the if block. For the test input n = 7;a = 5;b = 6, the program in

Figure 5.5(a) yields the result 2 while the program in Figure 5.5(b) yields 4. Now, we

feed the source program of Figure 4.12(a) and the PRES+ model of the erroneous pro-

gram of Figure 5.5(b) to our equivalence checker; the checker successfully determines

that the two programs are non-equivalent. The typical tool output for this example is

given in Figure 5.7; specifically, path 9 of (model 1) has been identified to have no

equivalent path in model 2 (output-lines 17-18). �

Errors Example no. of FSMDEQX(PE) FSMDEQX(VP) DCPEQX DCPEQX

opns Non-EqChk Non-EqChk (hand const.) (automated

moved Time (µs) Time (µs) Non-EqChk model const.)

Time (µs) Non-EqChk

Time (µs)

Type 1 MODN 1 15456 13471 17255 34048

GCD 1 10435 10142 12523 42872

Type 2 TLC 2 14592 13780 16434 123414

Type 3 LRU 2 19278 16143 23143 733452

LCM 1 11412 10619 12134 51231

Type 4 MINANDMAX-P 2 � � 24347 �

PATTERSON 4 � � 10913 �

Table 5.4: Non-equivalence checking times for faulty translations

126 Chapter 5 DCP Induced Path Based Equivalence Checking Method

Table 5.4 depicts the descriptions of the errors introduced in the examples, the

number of operations moved and the execution times taken by the FSMDEQX module

and by the DCPEQX module; (in each cases, the non-equivalence has been detected by

the modules successfully;) the performance of the latter is assessed on the hand con-

structed as well as automatically constructed PRES+ models for each example. The

last three columns of the Table 5.4 record these respective times (including path con-

struction times). It is to be noted that in all cases, the non-equivalence detection time is

comparable with the equivalence checking time. It is worth mentioning that in course

of this experiment our equivalence checker has identified a bug of the PLuTo compiler

(possibly due to faulty usage of an existing variable namely, t1, holding intermediate

results in the source program as the loop control variable t1 in the transformed pro-

gram) around the program given in Figure 5.6. The error was successfully detected by

our equivalence checker.

5.4 Conclusion

This chapter deals primarily with an equivalence checking method based on paths in-

duced by dynamic cut-points. It has been formally established first that any path based

equivalence checking approach, where the paths are defined using dynamic cut-points

introduced in the previous chapter, would be a valid one. A specific method belonging

to this class has been described in detail and illustrated. A sophisticated path extension

mechanism has been devised to handle some code motion scenarios. The complex-

ity and correctness issues have been treated comprehensively. Experiments on some

sequential programs under code motion transformations and parallelizing transforma-

tions have been carried out and the results analyzed and found to be compatible with

the expected behaviour predicted theoretically. Errors have been manually injected

and non-equivalence checking capability of the implementation has been studied. De-

vising an efficient path based equivalence checking method where the costly path

extension is not needed is our next goal.

5.4 Conclusion 127

int main(void) {
int s = 0, i = 0, n, b,

sout, a, k, l, t;
do {

if (i <= 15) {
i = (i + 1);
k = (b % 2);
l = (a * 2);
b = (b / 2);
if (k == 1) {

s = (s + a);
t = (l - n);
a = l;

} else {
t = (l - n);a = l;

}
/* t=(l-n) is removed
in erroneous code */
if (s >= n) {

s = (s - n);
}
if (l >= n) {

a = t;
}

} else
break;

} while (1);
sout = s;
printf("%d \n", sout);

}
(a)

int main(void) {
int s = 0, i = 0, n, b,

sout, a, k, l, t;
do {

if (i <= 15) {
i = (i + 1);
k = (b % 2);
l = (a * 2);
b = (b / 2);
if (k == 1) {

s = (s + a);
t = (l - n);
a = l;

} else {
a = l;

}
if (s >= n) {

s = (s - n);
}
if (l >= n) {

a = t;
}

} else
break;

} while (1);
sout = s;
printf("%d \n", sout);

}
(b)

Figure 5.5: (a) Transformed program using SPARK compiler; (b) the erroneous ver-

sion

int i=0, n, a=6, b=7, t1;
pragma scop
while (i < n){

t1 = a*b; i++;
}

pragma endscop
(a)

int i=0, n, a=6, b=7, t1;
CLooG code
while (t1 < n){

t1 = a*b; t1++;
}
CLooG code

(b)

Figure 5.6: PLuTo Bug: (a) Source program – (b) transformed program

128 Chapter 5 DCP Induced Path Based Equivalence Checking Method

##################### PATH EQUIVALENCE ##############################

1 For Path 1 ...THE CONDITION IS -- THE TRANSFORMATION IS s := 0

2 PATH 1 OF MODEL 2 IS MATCHED WITH PATH 1 OF MODEL1

3 For Path 2 ...THE CONDITION IS -- THE TRANSFORMATION IS i := 0

4 PATH 2 OF MODEL 2 IS MATCHED WITH PATH 2 OF MODEL1

5 For Path 3 ...THE CONDITION IS -- THE TRANSFORMATION IS a := 0 + 1 * id

6 PATH 3 OF MODEL 2 IS MATCHED WITH PATH 3 OF MODEL1

7 For Path 4 ...THE CONDITION IS -- THE TRANSFORMATION IS b := 0 + 1 * id

8 PATH 4 OF MODEL 2 IS MATCHED WITH PATH 4 OF MODEL1

9 For Path 5 ...THE CONDITION IS -- THE TRANSFORMATION IS n := 0 + 1 * id

10 PATH 5 OF MODEL 2 IS MATCHED WITH PATH 5 OF MODEL1

11 For Path 6 ...THE CONDITION IS (-15 + 1 * i <= 0) THE TRANSFORMATION

12 IS s := 0 + 1 * s PATH 6 OF MODEL 2 IS MATCHED WITH PATH 6 OF MODEL1

13 For Path 7 ...THE CONDITION IS (-15 + 1 * i > 0) THE TRANSFORMATION IS

14 s := 0 + 1 * s PATH 7 OF MODEL 2 IS MATCHED WITH PATH 7 OF MODEL1

15 For Path 8 ...THE CONDITION IS -- THE TRANSFORMATION IS k := 0 + 1 * b

16 PATH 8 OF MODEL 2 IS MATCHED WITH PATH 8 OF MODEL1

17 For Path 9 ...THE CONDITION IS (-1 + 1 * k == 0) THE TRANSFORMATION IS

18 l := 0 + 1 * a + 1 * 0 + 1 * n CANDIDATE PATH:PATH 9 MISMATCH NO EXTENSION

19 For Path 10 ... THE CONDITION IS (0 - 1 * n < 0)

20 THE TRANSFORMATION IS k : = 0 + 1 * n + 1 * s

21 PATH 10 OF MODEL 2 IS MATCHED WITH PATH 10 OF MODEL1

. . . .

35 <<<<<<<<<<<<<<<<< THE TWO MODEL ARE NOT EQUIVALENT >>>>>>>>>>>>>>>>>

38 ###################### Verification Report ##############################

40 Exec time is 0 sec and 17255 microsecs

42 ##

Figure 5.7: Output of error detection of DCPEQX module for the MODN example

Chapter 6

Static Cut-point Induced Path Based
Equivalence Checking Method

In the previous chapter, we have discussed a DCP based equivalence checking pro-

cedure, referred to as DCPEQX procedure, where we have shown that by introducing

extra cut-points, any computation can be captured syntactically as a concatenation

of parallel paths. In the present chapter, we show that a computation can also be

captured semantically in terms of paths defined using static cut-points only without

introducing dynamic cut-points. Hence sound equivalence checking procedures using

such paths can also be devised. Towards this objective, we first modify the definition

of paths; we then establish the validity of such static cut-point induced path based

equivalence checking methods; we next discuss how the DCP based path construction

procedure, described in chapter 4, is modified to obtain an SCP based path construc-

tion procedure, which we referred to as the SCPEQX method. Throughout this chapter

by “cut-points” we would mean SCPs and DCPs will be explicitly mentioned to be

so.

6.1 Model paths using static cut-points only

Before defining the static cut-point induced paths formally, we demonstrate through

following two examples how static cut-point induced paths capture computations, al-

beit semantically, while the DCP based paths capture them syntactically. Recall that

129

130 Chapter 6 SCP Induced Path Based Equivalence Checking Method

t1 t2

p1

p2 p3

p4
p5 p6

p

p
12

p
13

7

9

p
10

t5
t6

t

t7

t8

p

t9

10

p11

t3 t4

p
8

α
1

α
2

α
3

Figure 6.1: SCP Induced Paths of a PRES+ Model.

in Chapter 4 we motivated the need for dynamic cut-points using Example 6. We first

reproduce this example here to show how the SCPs result in paths which can capture

the computation. The second example will reveal certain intricacies which will finally

lead to the definition of the SCP based paths.

Example 17. Let us consider the example of Figure 6.1. By the static cut-point def-

inition (Definition 12, Chapter 4), the set C of cut-points is fp1; p2; p3; p6; p10; p13g

and the paths will be α1 = hft1g;ft3g;ft5g;ft7; t8g;ft10gi, α2 = hft2g;ft4g;ft6gi and

α3 = hft9gi respectively. Let us now try to express a computation µp13 of the out-

port p13 in terms of paths, where µp13 = hT1 = ft1; t2g;T2 = ft3; t4g;T3 = ft5; t6g;T4 =

ft7; t9g;T5 = ft9g;T6 = ft8g;T7 = ft10gi. Note that in this sequence, the members of

any maximally parallelisable set can be arbitrarily ordered among themselves. While

reordering the sequence µp13 the only constraint that is to be followed is that if a transi-

tion t1 has some pre-place which is a post-place of some transition t2, i.e., t�2 \
�t1 6= /0,

then t2 must precede t1. Using this constraint, the computation µp13 can be rewritten as

hft2g;ft4g;ft6g;ft9g;ft9g;ft1g;ft3g;ft5g;ft7; t8g;ft10gi. Therefore, the computation

µp13 can be represented as hα2:α3:α3:α1i. �

6.1 Model paths using static cut-points only 131

In the following example, we describe a special case where a path cannot be

formed due to presence of the parallel threads with at least one thread containing a

loop.

p1 p6

p12

t4

t5

t1

p2 p3

t3

p8

p7
t7

p5

p4

t2

t6

p9 p10

p11

α1

α2

α3

Figure 6.2: Modified Path for SCP Method.

Example 18. In Figure 6.2, according to the definition of static cut-points (Definition

12, Chapter 4), the places p1; p2; p3; p6; p7; p10 and p12 are static cut-points. Using

these cut-points, paths cannot be constructed so that they extend from a set of cut-

points to a cut-point and also permit any computation to be captured as their sequence.

For example, for Figure 6.2 we may capture one path as α
0

1 = hft1; t2g;ft3; t4g;ft6g;ft5gi

and the other as α
0

2 = hft7gi, but no computation that goes through the loop at least

once can be captured through any of their sequences. Instead, if we permit the path α1

to end at p9 although it is not a cut-point, then we have a set of paths as fα1;α2;α3g as

shown in Figure 6.2 and any computation can be represented in terms of these paths.

For example, µp12 = hT1 = ft1; t2g;T2 = ft3; t4g;T3 = ft7g;T3 = ft7g;T4 = ft6g;T5 =

ft5gi; using constraint mentioned in Example 17, the computation µp12 is rewrit-

ten as hft2g;ft4g;ft7g;ft7g;ft1g;ft3g;ft6g;ft5gi where upon it can be represented as

hα2:α3:α3:α1i. �

Hence, we need to change the definition of path of a PRES+ model. The definition

of path is therefore, formally defined as follows.

132 Chapter 6 SCP Induced Path Based Equivalence Checking Method

Definition 23 (SCP induced path in a PRES+ model). A finite path α in a PRES+

model from a set T1 of transitions to a transition t j is a finite sequence of distinct sets of

parallelisable transitions of the form hT1 = ft1; t2; : : : ; tkg;T2 = ftk+1; tk+2; : : : ; tk+lg; : : : ;Tn =

ft jgi satisfying the following properties:

(i) �T1 contains at least one cut-point or one co-place of a cut-point.

(ii) T �
n contains at least one cut-point.

(iii) There is no cut-point in T �
m , 1� m < n.

(iv) 8i;1 < i � n;8p 2 �Ti, if p is neither a cut-point nor a co-place of a cut-point,

then 9k;1� k � i�1; p 2 T �
i�k; thus, any pre-place of a transition set in the path

which is neither a cut-point nor a co-place of a cut-point must be a post-place of

some preceding transition set in the path.

(v) There do not exist two transitions ti and tl in α such that �ti\ �tl 6= /0.

(vi) 8i;1� i� n, Ti is maximally parallelisable within the path, i.e., 8l 6= i;8t 2 Tl in

the path, Ti[ftg is not parallelisable.

The fact that every set Ti succeeds all the transitions T1 through Ti�1 follows from

clauses 4 and 6 of the above definition; otherwise, if there exists some set Ti�m, m� 1,

such that Ti does not succeed Ti�m, then Ti can be parallelized with Ti�m but clause 6

indicates that Ti is maximally parallelisable within the path. The set �T1 of places is

called the pre-places of the path α, denoted as �α; similarly, the post-places α� of the

path α is T �
n . We can synonymously denote a path α = hT1;T2; : : : ;Tni as the sequence

h�T1;
�T2; : : : ;

�Tn;T �
n i of the sets of places from the place(s) �T1 to the place(s) T �

n .

6.2 Capturing any computation in terms of Paths

In this section, we formally establish that any computation can be captured by a set

of SCP-paths. To develop an intuitive perception of the formal reasoning used to

establish the result, we illustrate the mechanism by the following example.

6.2 Capturing any computation in terms of Paths 133

p1

p2

p3 p4

p5 p6
p7 p8

p9

p10

p11

p12

t1

t2

t3t4 t5

t6
t7

t8

α1

α2 α3

α4

α6

α7ξ1
ξ2

ξ1 ξ2

α5

Figure 6.3: SCP Induced Paths of a PRES+ model.

Example 19. Consider the model given in Figure 6.3. By Definition 12, the set C

of static cut-points is fp1; p2; p3; p4; p5; p8; p12g; the corresponding path set Π is

fα1 = hft1gi;α2 = hft4gi;α3 = hft5gi;α4 = hft2g;ft6gi, α5 = hft2g;ft7gig, α6 =

hft2g;ft8gig, and α7 = hft3gig. Let us consider the computation µ = hft1; t4; t5g;ft2g;

ft6; t7g, ft8g;ft2g; ft6; t7g, ft8g;ft3gi of the out-port p12. We can reorder the transi-

tion sets of µ using the fact that any maximally parallelisable set of transitions can

be partitioned arbitrarily and the members of the partition executed in any arbitrary

order so that the sequence corresponding to a path occurs as a whole without having

member transitions of other paths interspersed within the sequence. This arrangement

permits us to view the reordered µ, referred to as µr, as a sequence of paths. The steps

are as follows.

134 Chapter 6 SCP Induced Path Based Equivalence Checking Method

The last member in the computation µ is identified as the unit set ft3g. From

Π, we notice that t3 occurs as the last transition in the path α7; so α7 must be the

last member in µr; hence the reordered sequence in the first step becomes µr(1) =

hα7i. Deleting the member sets of transitions of α7 from µ, the latter becomes µ(1) =

hft1; t4; t5g;ft2g;ft6; t7g, ft8g;ft2g;ft6; t7g;ft8gi.

Now, the last transition set in µ(1) is the unit set ft8g; it is found to occur as the last

transition in the path α6 = hft2g;ft8gi; the transition ft8g is deleted from µ; the other

transition t2 occurs in the path α4 and α5 as well; hence, t2 is not deleted from µ. the

path α6 is placed before the path α7 in µr thereby, µr(1) becomes µr(2) = hα6:α7i and

the computation µ(1) becomes µ(2) = hft1; t4; t5g;ft2g;ft6; t7g, ft8g;ft2g;ft6; t7ggi.

Now, the last member in µ(2) is ft6; t7g which is not a unit set. The transition t6 is

the last member of the path α4; the transition t7 is the last member of the path α5. As

the transitions t6 and t7 are parallelisable, the paths α4 and α5 are also parallelisable

— a fact we prove subsequently; hence, they can be chosen to be placed in any order

before α6 in µr(3). Let us decide to place α5 and then α4; so µr(4) = hα4:α5:α6:α7i.

Using the same reason, as explained above, the transition t2 is not deleted from µ

and µ(4) becomes hft1; t4; t5g;ft2g;ft6; t7g, ft8g;ft2gi. Now, in µ(4), the last member

comprising ft2g is not the last transition of any paths. Hence, t2 is deleted from µ(4).

Therefore, the new µ(4) becomes µ(5) is hft1; t4; t5g;ft2g;ft6; t7g, ft8gi.

It may now be noted that the last three members in µ(1) is the same as those of

µ(5); so the process by which µ(1) got transformed to µ(5) and µr(1) got transformed

to µr(4), as described in the above paragraphs, will be repeated resulting in µr(8) =

hα4:α5:α6:α4:α5:α6:α7i and µ(8) = hft1; t4; t5gi.

Now the last (and the only member) of µ(8) is ft1; t4; t5g. They are respectively the

last (and only) transitions of the parallelisable paths α1;α2 and α3. Hence these paths

can be placed in arbitrary order in µr(8). Repeating the steps, described above, thrice

for the three paths, we get the final reordered sequence µr = µr(11)= hα1:α2:α3:α4:α5:α6:

α4:α5:α6:α7i and µ(11) becomes empty whereupon the process terminates. We shall

formally establish that µr ' µ. �

We formalize the above discussion using the following two theorems.

Theorem 9. Let α1 = hT1;1;T2;1; : : : ;Tm;1i and α2 = hT1;2;T2;2; : : : ;Tn;2i be two paths

6.2 Capturing any computation in terms of Paths 135

such that their last transitions Tm;1 and Tn;2 are parallelisable. Then, α1 and α2 are

parallelisable.

Proof. Let it not be so. From Definition 17 of parallelisable pairs of paths, we have

the following cases:

Case 1: α1 � α2. From Definition 16, there exist at least one set of paths αk1;αk2 ; : : : ;

αkn and a set of places p1 2
�α1 and pkm 2

�αkm;1�m� n, such that h last(α2); pk1i,

h last(αk1); pk2i; : : : ; h last(αkn); p1i 2 O � T �P, n � 0, and none of them is a

back edge. Therefore, using the fact that last(α) � first(α), for any path α,

and reading the above sequence of edges backward, we have last(α1)=Tm;1 �

first(α1) � last(αkn) � first(αkn) � last(αkn�1) � : : : � first(αk2) � last(αk1) �

first(αk1) � last(α2) = Tn;2. Hence, Tm;1 � Tn;2) Tn;2 6� Tm;1 (Contradiction).

Case 2: α2 � α1. Following the same argument, as for Case 1, by symmetry with α1

and α2 interchanged, we again obtain the refutation of the hypothesis Tm;1 �

Tn;2.

Case 3: 9αk;αl;(αk 6= αl ^α1 � αk ^α2 � αl ^
�αk\

�αl 6= /0). �αk\
�αl 6= /0)

9ti;k 2 αk;9t j;l 2 αl such that �ti;k\ �t j;l 6= /0. Let the last transitions of the paths

αk and αl be tr;k and ts;l , respectively. Since α1 � αk, Tm;1 � tr;k � ti;k; (recall

that Tm;1 = ftm;1g). Similarly, since α2 � αl , Tn;2 � ts;l � t j;l . Thus, Tm;1 � ti;k,

Tn;2 � t j;l and �ti;k\� t j;l 6= /0. Therefore, Tm;1 is not parallelisable with Tn;2 (from

Definition 4).

Theorem 10. Let Π be the set of all paths of a PRES+ model obtained from a set of

static cut-points. For any computation µp of an out-port p of the model, there exists a

reorganized sequence µr
p of paths of Π such that µp ' µr

p.

Construction of a sequence µr
p of (concatenation of) paths from µp: Algorithm

16 (constructPathSequence) describes a recursive function for constructing from a

given computation µp and a set Π of paths the desired reorganized sequence µr
p of

paths of Π such that µr
p ' µp. If µp is not empty, then a path α is selected from Π such

that last(α)\ last(µp) 6= /0; if all its transitions are found to occur in µp, then it is put as

136 Chapter 6 SCP Induced Path Based Equivalence Checking Method

the last member in the reorganized sequence; the member transitions of α are deleted

from µp examining the latter backward; the transitions in the last member of α are

always deleted from µp; each of the other transitions of α is deleted from µp only if it

does not occur in any other path in Π. If jlast(µP)j > 1, then each member transition

of last(µp) will result in one path which has to be processed separately through above

steps. Once all these paths are processed, the last(µp) will get deleted from µp. The

resulting µp is then reordered recursively; the process terminates when the input µp

becomes empty.

Proof. (µr
p ' µp): We first prove that Algorithm 16 terminates; this is accomplished

in two steps; first, it is shown that each invocation comprising four loops terminate;

we next show that there are only finitely many recursive invocations.

Termination of the while loop comprising lines 16-18 is obvious; either i becomes

less than one or a member µp:Ti is found to contain last(α
0
) (for some i > 1). The

for loop comprising lines 22-26 iterates only finitely many times because the number

of transitions in any member set of a path (and hence µ
0

p:Ti) is finite; the while loop

comprising lines 15-29 terminates, because in every iteration, it is examined whether

the computation µ
0

p contains the last member of α
0
; if so, α

0
loses this member in line

27 and the next iteration of the loop executes with α
0
having one member less. Finally,

the for loop comprising lines 10-35 terminates because the set last(µp) of transitions

(before entering the loop), and hence the set Πlast(µp) of paths are finite.

The second step follows from the fact that in each recursive invocation, µp has one

member (namely, its last member) less than the previous invocation (line 40 in the if

statement comprising lines 37-41). Hence, if µp has n members, then there are n total

invocations (n�1 of them being recursive).

Now, for proving µr
p ' µp, let the first parameter µp for the kth invocation be desig-

nated as µ(k)p , 1� k� n; the second parameter Π remains the same for all invocations;

let the value returned by the kth invocation be µr(k)
p ; specifically, µp = µ(1)p ; µ(n�1)

p

comprises just one member and µ(n)p = hi; µr(n)
p = hi and µr(1)

p is the final reordered

sequence of paths µr
p.

We prove µ(n�m)
p ' µr(n�m)

p ;0 � m � n� 1, by induction on m. Note that specifi-

cally for m = n�1, µ(n�m)
p = µ(1)p = µp and µr(n�m)

p = µr(1)
p = µr

p (by line 41 of the first

6.2 Capturing any computation in terms of Paths 137

invocation). Hence, the inductive proof would help us establish that µr
p ' µp.

Basis m = 0: µ(n)p = hi= µr(n)
p (by line 2 of the nth invocation)

Induction Hypothesis: Let for m = k�1, µ(n�k+1)
p ' µr(n�k+1)

p

Induction step: Let m be k. Let us assume that

µ(n�k)
p ' µ(n�k+1)

p :µr(n�k)
l (Lemma 7 – proved subsequently)

' µr(n�k+1)
p :µr(n�k)

l (by induction hypothesis)

' µr(n�k)
p (by line 40 (return statement) for the (n� k)th invocation)

Lemma 7. µ(n�k)
p ' µ(n�k+1)

p :µr(n�k)
l

Proof. We mould the lemma for the kth invocation directly as

µ(k)p ' µ(k+1)
p :µr(k)

l ' µ(k+1)
p :hα1;k;α2;k; : : : ;αs;ki;1� k � n; (6.1)

assuming that hα1;k;α2;k; : : : ;αs;ki is what is extracted as µr(k)
l from µ(k)p in line 40 of

the kth iteration. Now, by step 6, the last transition of all the paths in the sequence

µr(k)
l are parallelisable; hence, from Theorem 9, the paths of µr(k)

l are parallelisable.

We prove that their transitions can be suitably placed in the member sets of µ(k+1)
p (as

larger sets of parallelisable transitions) to get back µ(k)p .

In the kth invocation, µ(k)p is the value of µp before entry to the for-loop comprising

lines 10-35 and µ(k+1)
p is the value of µp at the exit of this loop. Since we are speaking

about only the kth invocation, we drop the superfix k for clarity. Instead, we depict

µ(k)p as µ�p , µ(k+1)
p as µ+p and µr(k)

l as µr
l . So we have to prove that µ�p ' µ+p :µ

r
l .

Let µr
l = hα1;α2; : : : ;αsi before line 37 just after the end of the for-loop comprising

lines 10� 35, where s is the cardinality jΠlast(µp)j before entry to the loop (because

any path has only one unit set of transitions as its last member). Thus, the for-loop

comprising lines 10�35 executes s times visiting step 33; let µ�(i)p , µ+(i)p respectively

denote the values of µp before and after the ith iteration of the loop. Let µr(i)
l be

the value of µr
l after the ith execution of the loop. We have the following boundary

conditions: µ�p = µ�(1)p ;µ+p = µ+(s)p ;µr(1)
l = hα1i and µr

l = µr(s)
l = hα1;α2; : : : ;αsi. The

ith iteration of the for-loop comprising lines 10� 35 starts with µr(i�1)
l and obtains

138 Chapter 6 SCP Induced Path Based Equivalence Checking Method

µr(i)
l , 1� i� l; so let µr(0)

l = hi be the value of µr
l with which the first execution of the

loop takes place.

We prove that µ�(i)p ' µ+(i)p :αi;1� i� s. If this relation indeed holds, then specif-

ically for i = 1, µ�(1)p ' µ+(1)p :α1; for i = 2, µ�(2)p (= µ+(1)p) ' µ+(2)p :α2. Combining

these two, therefore,

µ�p = µ�(1)p ' µ+(1)p :α1' (µ+(2)p :α2):α1' µ+(2)p :(α2:α1)' µ+(2)p :(α1:α2)' µ+(2)p :µr(2)
l .

Proceeding this way, we have µ�p = µ�(1)p ' : : :' µ+(l)p :µr(l)
l = µ+p :µ

r
l .

Now, let µ�(i)p = hT1;i;T2;i; : : : ;Tki;ii, αi = hT
0

1;i;T
0

2;i; : : : ;T
0

li;ii and µ+(i)p = hT+
1;i;T

+
2;i; : : : ;

T+
n;ii. Note that fαi j 1 � i � sg � Πlast(µp) and unless all the paths are extracted out,

Tki;i does not become empty and hence µ�(i)p ;1 � i � s, do not change in length. For

each transition set T 0
j;i of αi, 1 � j � n, there exists some transition set Tk;i of µ�(i)p ,

1� k � ki, such that T
0

j;i � Tk;i. Specifically, for j = li, T
0

li;i � Tki;i, since αi 2Πlast(µ�p)

as ensured in step 6. For other values of j;1 � j < li, the while-loop in steps 16-18,

identifies proper Tk;i in µ�(i)p such that T
0

j;i � Tk;i; note that since αi has figured in µr
l ,

step 32 is surely executed for αi; so α0 has been rendered empty (hi) through execution

of step 27 and hence the while-loop in steps 16-18 does not exit with i = 0. Now, step

13 and the for-loop in steps 22-26 ensure that T+
k;i [Tj;i = Tk;i.

Let T
0

j;i � Tn j;i;1� j � li. So, Tk;i = T+
k;i, for k 6= n j, for any j, 1� j � li.

µ+p (i):αi = hT+
1;i;T

+
2;i; : : : ;T

+
n;ii:hT

0
1;i;T

0
2;i; : : : ;T

0
li;ii

= hT1;i; : : : ;(T+
n1;i kT 0

1;i); : : :(T
+

n2;i kT 0
2;i); : : : ;(T

+
nli�1;i kT 0

li;i); : : : ;(T
+

ni;i kT 0
li;i)i

(by commutativity of independent transitions)

= hT1;i; : : : ;Tn1;i; : : : ;Tn2;i; : : : ;Tnli�1;i; : : :Tn;ii

= µ�(i)p

Corollary 1. If µr
p is of the form hα1;α2; : : : ;αki, for all j;1� j � i�1;α j � αi.

Definition 24 (SCP induced path cover). A finite set of paths Π = fα0;α1; : : : ;αkg is

said to be a path cover of a PRES+ model N if any computation µ of an out-port of N

can be represented as a concatenations of paths from Π.

From Theorem 10, it follows that a set of paths obtained from a given set of static

cut-points is a path cover of the model.

6.2 Capturing any computation in terms of Paths 139

Algorithm 16 SEQUENCE constructPathSequence (µp;Π)
Inputs: µp: computation of an out-port p and Π: set of paths
Outputs: A sequence of paths equivalent to µp.
1: if µp = hi then
2: return hi;
3: else
4: Let µp be hT1;T2; : : : ;Ti; : : :Tni;
5: Let µr

l = hi;
/* a local sub-sequence of paths which, at the return statement 40, contains the sequence of
paths with their last transitions in Tn */

6: Let Πlast(µp) = fα j last(α)\ last(µp) 6= /0g;
7: if Πlast(µp) = /0 then
8: µp:Tn = /0; //Ignore intermediary transitions of paths
9: else

10: for all α 2Πlast(µp) do
11: α

0

= α� last(α);
12: µ

0

p = µp; // work on a copy of µp

13: µ
0

p:Tn = µ
0

p:Tn� last(α);
/* Delete the last transition of α; if it occurs in any other paths (as an intermediary tran-
sition), then such a path has already been detected. Now detect whether all the remaining
transitions of α are available in µp(µ

0

p); as a transition is detected, it is deleted from µ
0

p and
the copy α

0

of α only if it does not occur in any other path in Π. If all the transitions of α

do not occur in µp, (i.e., α
0

does not become empty), then α is ignored and the next path
from Πlast(µp) is taken in the next iteration. */

14: i(n�1; // detection of transitions proceeds backward
15: while α

0

6= hi do
16: while (i� 1^last(α

0

) * µ
0

p:Ti = /0) do
17: i = i�1;
18: end while
19: if i = 0 then
20: break;
21: else
22: for all t 2 last(α

0

) do
23: if t does not occur in any path in Π�fαg then
24: µ

0

p:Ti(µ
0

p:Ti�ftg;
25: end if
26: end for
27: α

0

= α
0

� last(α
0

)\µp:Ti;
28: end if
29: end while
30: /* both α

0

6= hi and α
0

= hi are possible */
31: if α

0

= hi then
32: append (α;µr

l);
33: µp = µ

0

p;
34: end if
35: end for
36: end if
37: if original member µp:Tn is not empty then
38: report failure with µp
39: else
40: return (concatenate (constructPathSequence(µp;Π);µr

l));
41: end if
42: end if

140 Chapter 6 SCP Induced Path Based Equivalence Checking Method

6.2.1 Validity of Static cut-point induced path based equivalence

checking method

Before describing the validity of static cut-point induced path based equivalence check-

ing method, it is to be noted that definitions of path equivalence, corresponding transi-

tions and definition of corresponding places (Definition 21) remain the same for static

cut-point based equivalence checking method.

Theorem 11. A PRES+ model N0 is contained in another PRES+ model N1, denoted

as N0 v N1, if there exists a finite path cover Π0 = fα1;α2; : : : ;αmg of N0 for which

there exists a set Ψ1 = fΓ1;Γ2; : : : ;Γmg of sets of paths of N1 such that for all i;1 �

i�m, (i) αi ' β, for all β 2 Γi. (ii) For each αi;1� i�m, each pre-place of αi has a

place-correspondence with some pre-place of β, where β 2 Γi, (iii) all the post-places

of αi have correspondence with all the post-places of β 2 Γi.

Proof. Consider any computation µ0;p of an out-port p of N0. From Theorem 10,

corresponding to µ0;p, there exists a reorganized sequence µr
0;p = hα

p
1 ;α

p
2 ; : : : ;α

p
ni,

say, of not necessarily distinct paths of N0 such that (i) α
p
j 2 Π0, 1 � j � n, (ii) for

each occurrence of a transition t in µ0;p, there exists exactly one path in µr
0;p containing

that occurrence, (iii) p 2 (α
p
n)� and (iv) µ0;p ' µr

0;p.

Let us now construct from the sequence µr
0;p, a sequence µr

1;p0 = hΓ
p0
1 ;Γ

p0
2 ; : : : ;Γ

p0
n i

of not necessarily distinct sets of paths of N1, where (i) Γ
p0
n = fβlg and p0 2 β�l , and

for all j;1 � j � n, for each β 2 Γ
p0
j , (ii) β ' α

p
j , and (iii) each pre-place of β has

correspondence with some pre-place of α
p
j . It is required to prove that (1) p0 = fout(p)

and (2) there exists a computation µ1;p0 of N1 such that µ1;p0 ' µr
1;p0 .

The proof of (1) is as follows. Since p0 2 β�l and βl ' αn, from hypothesis (iii) of

the theorem, p0 has correspondence with p; since the place p 2 P0 is an out-port and

the place p0 2 P1, p0 must be an out-port of N1 and p0 = fout(p) (because an out-port

of N0 has correspondence with exactly one out-port of N1 specifically, its image under

the bijection fout).

For the proof of (2), we first give a mechanical construction of µ1;p0 from µr
1;p0; we

then show that they are equivalent; finally, we argue that µ1;p0 is a computation of p0

in N1.

6.2 Capturing any computation in terms of Paths 141

Construction of µ1;p0 from µr
1;p0:

Algorithm 17 Sequence parallelizeSeqSetsOfPaths (µr
p)

Inputs: µr
p : a sequence of sets of paths

Outputs: µjj: a sequence of maximally parallelisable sets of transitions of all the paths in
µr

p.
1: Γ = head(µr

p); µr
p = tail(µr

p);
2: µjj = some path β 2 Γ; Γ = Γ�fβg; // β chosen arbitrarily
3: while µr

p 6= /0 do
4: if Γ 6= /0 then
5: Γ = head(µr

p);µr
p = tali(µr

p); // except for the first iteration, if-condition holds
6: end if
7: for each β 2 Γ do
8: Let c = 1;

/* index to the members of µjj � cth member is µjj;c; for each path of µr
p, checking has to be

from the first member of µjj.*/
9: while β 6= /0 do

10: Tc = µjj;c;
11: Tp = head (β);

/* Tp is the maximally parallelisable set (member) of β presently being considered for fusion
with Tc */

12: β = tail(β);
13: while Tp � Tc^ c� length (µjj) do
14: /* Tp succeeds Tc */
15: c++;
16: Tc = µjj;c;
17: end while
18: if c > length (µjj) then
19: /* Tp is found to be parallelisable with none of the members of µjj; so Tp � T;8T 2 µjj

concatenate all the members (including Tp) of β after µjj */
20: µjj concatenate (µjj;β); β = /0;
21: else
22: µjj;c = µjj;c[Tp; c++;

/* Tc � Tp or Tc = Tp – absorb Tp in Tc */
23: end if
24: end while
25: end for
26: end while
27: return µjj;

Algorithm 17 describes the construction method of µ1;p0 from µr
1;p0 (and hence will

be invoked with its input µr
p instantiated with µr

1;p0). The parallelized version of the in-

put µr
p is computed in µjj which is to be assigned to µ1;p0 on return. In the initialization

step (step 1), a working set Γ of paths is initialized to the first member of µr
p and the

latter is removed from µr
p. In step 2, some path β is taken from Γ and put into µjj. In

the outermost while-loop (steps 3-26), member sets of Γ are taken one by one (in steps

4-6) from µr
p; for each chosen set, its member paths are taken in the loop comprising

steps 7-25; for each chosen path β, its member sets (of maximally parallelisable tran-

sitions) are examined one after another and checked against the members of µjj from

142 Chapter 6 SCP Induced Path Based Equivalence Checking Method

the beginning for fusion with them to construct larger sets of parallelisable transitions

(steps 9� 24). For each chosen set Tp of transitions of β, one of the following two

situations may arise:

Case 1 : The member Tp of the chosen path β of µr
p is found to succeed all the mem-

bers in µjj, i.e., Tp is not parallelisable with any member of µjj. In this case,

all the remaining members (including Tp) of β is concatenated at the end of µjj
[Steps 18-20] .

Case 2 : The member Tp of β is found not to succeed the cth member µjj;c of µjj,

i.e., Tp is parallelisable with µjj;c, as argued later. In this case, Tp is combined

(through union) with µjj;c; the successor transition sets of β need to be compared

with only the subsequent members of µjj, i.e., with µjj;c+1 onwards [Step 22] .

Termination: The algorithm terminates because all the three while loops and the

for-loop terminate as given below:

The outer loop (steps 3-26) terminates because µr
p is finite to start with; (step 1

outside the loop reduces its length by one;) step 5 inside the loop reduces its length by

one on every iteration of the loop. The for-loop (steps 7-25) terminates because the set

Γ contains a finite number of paths and loses the chosen path in each iteration as per

the semantics of the for-construct. The loop comprising steps 9-24 terminates because

every path β in µr
p contains a finite number of sets of transitions and step 12 reduces

the length by one in every iteration of the loop; if, however, any of these iterations do

visit steps 19-20, then in step 20, β becomes empty and hence, this will be the last

iteration of the while loop comprising steps 9 to 24. The loop comprising steps 13-17

terminates because at any stage, and hence on entry to the loop, µjj has only a finite

number of sets of transitions and in every iteration c increases by one; so finally, the

second condition c � length(µjj) is bound to become false if the first condition does

not become false by then.

Proof of µ1;p0 ' µr
1;p0: Let the initial value of µr

p (with which the function in Al-

gorithm 17 is invoked), denoted as µr
p(�1), be of the form µr

p(�1) = hΓ1;Γ2; : : : ;Γni,

where, for all i;1� i� n;Γi = fβ1;i;β2;i; : : : ;βti;ig. So the outermost while-loop (steps

3-26) executes n times; for the i�th execution of this loop, the inner for-loop executes

ti times; together, there are t1� t2� : : :� tn = t, say, iterations in each of which a path

6.2 Capturing any computation in terms of Paths 143

β j;i is accounted for. The algorithm treats these paths identically without making any

distinction among paths from the same set or different sets. Hence we can treat the

members of µr
p as a flat sequence of paths of the form hβ1;β2; : : :βti. Let µr

p(i) and

µjj(i) respectively indicate the values of µr
p and µjj at step 8 after the i� th path βi in

the above sequence has been treated. So, the first time step 8 is executed, the value

of µjj is µjj(0) = the first member β1 of µr
p(�1) and µr

p(0) contains all the remaining

members β2; : : : ;βt of µr
p(�1). The final value returned by the algorithm (step 27) is

µjj(t) and µr
p(t) = /0 (by negation of the condition of the outermost while loop (steps

3-26)). We have to prove that µ1;p0 = µjj(t)' µr
p(�1) = µr

1;p0 ' µr
0;p ' µ0;p. We prove

the invariant

µjj(i):µ
r
p(i)' µr

p(�1);8i;0� i� t : : : : : : Inv(1) (6.2)

by induction on i, where the operator 0:0 stands for concatenation of two sequences.

Note that in this invariant, for i = t,

µjj(t):µr
p(t) ' µr

p(�1)) µ1;p0: /0 ' µr
p) µ1;p0 ' µr

1;p0; which would accomplish

the proof as µr
1;p0 ' µr

0;p holds because the former has been obtained by equivalence

substitution of each member in the latter and µr
0;p ' µ0;p by Theorem 10.

Basis (i = 0): µjj(0):µr
p(0) = hβ1i:hβ2; : : : ;βti = hβ1;β2; : : : ;βti ' µr

p(�1).

Induction Hypothesis: Let µjj(i):µr
p(i)' µr

p(�1), for i = m�1.

Induction step (i = m): R.T.P µjj(m):µr
p(m) ' µr

p(�1). Let the mth path cho-

sen be βm = hT1;m;T2;m; : : : ;Tlm;mi. Let µk(m� 1) = hT1;T2; : : : ;Tki. For T1;m(= Tp),

comparison starts with the first member T1 = Tc of µjj(m�1).

Now we need to consider the inner while loop comprising steps 9-24, where the

members of βm, i.e., Tj;m, 1 � j � lm, are taken one by one and compared with the

members of µjj(m� 1). Note that the inner loop need not always execute lm times.

Let it execute nm � lm times. Let µr
p(m� 1)(j), 1 � j � nm, represent the value of

µr
p(m�1) after the jth iteration of this loop for the path βm. Thus, µr

p(i�1)(0) is the

value of µr
p(i�1) at step 8 when no members of βi have yet been considered. Hence,

µr
p(m�1)(0) = µr

p(m�1). Also, µr
p(i�1)(ni) = µr

p(i). Let βm(j) be the value of βm

and µjj(m�1)(j) be the value of µjj(m�1) after the jth execution of the inner while

144 Chapter 6 SCP Induced Path Based Equivalence Checking Method

loop (steps 9-24) for the path βm. We prove the invariant

µjj(m�1):βm ' µjj(m�1)(j):βm(j);8 j;0� j � nm : : : : : : Inv(2) (6.3)

Let us first examine how the Inv (2) helps us accomplish the proof of the induction

step of Inv (1). Putting j = nm in Inv (2),

µjj(m�1):βm ' µjj(m�1)(nm):βm(nm) = µjj(m): /0

(since, µjj(m�1)(nm) = µjj(m) and βm(nm) = /0 from the termination

condition of the loop comprising steps 9-24).

Also, βm:µr
p(m) = µr

p(m� 1) [when βm is chosen at step 7]. So for the inductive

step proof goal,

µjj(m):µr
p(m) = (µjj(m�1):βm):µr

p(m)

= µjj(m�1):(βm:µr
p(m)) [by associativity of concatenation operation ’.’]

= µjj(m�1):µr
p(m�1)' µr

p(�1) [by induction hypothesis]

We now carry out the inductive proof of Inv (2) by induction on j.

Basis (j = 0): The basis case holds because µjj(i�1)(0) = µjj(i�1) and βi(0) =

βi.

Induction Hypothesis: Let the invariant Inv (2) is true for j = k�1, i.e.,

µjj(m�1):βm ' µjj(m�1)(k�1):βm(k�1).

Induction step (j = k) : R.T.P µjj(m�1):βm ' µjj(m�1)(k):βm(k). Let βm(k�

1) = hTk;m;Tk+1;m; : : : ;Tlm;mi. Without loss of generality, let the iterations 1; : : : ;k�1

of the loop of steps 9-24 did not visit step 20; otherwise, the loop will not be executed

kth time. In the kth iteration of the loop, Tk;m is compared with some Tc 2 µjj(m�

1)(k�1). We have the following two cases:

Case 1: Tk;m is found to succeed all the members of µjj(m�1)(k�1) from Tc onwards

– Hence, Tk;m is parallelisable with no members of µjj(m� 1)(k). In this case,

step 20 is executed resulting in concatenation of all the transition sets of βm(k�

1) with µjj(m�1)(k�1) and βm(k) becomes empty. So, µjj(m�1)(k) = µjj(m�

1)(k�1):βm(k�1);

hence, µjj(m�1):βm ' µjj(m�1)(k�1):βm(k�1) [by Induction hypothesis]

6.2 Capturing any computation in terms of Paths 145

= µjj(m�1)(k):βm(k) (since βm(k) = /0)

Case 2: Tk;m � Tc – This implies Tk;m � Tc, as argued below. Note that between the

two transition sets Tk;m and Tc, there can be three mutually exclusive relations

possible namely, Tk;m � Tc;Tc � Tk;m and Tk;m � Tc. It is given that Tk;m � Tc;

now, let Tc � Tk;m. The transition set Tc in µjj(m�1) is contributed to by paths

which precede the path βm in µr
p. Hence Tc does not succeed Tk;m. Therefore,

Tk;m � Tc. Let µjj(m�1) = hT1;T2; : : : ;Tc;Tc+1, : : : ;Tk; : : :Tkm�1i. For all s;1 �

s � km�1� c, Tc � Tc+s. By an identical reasoning, Tk;m does not also succeed

Tc+s because otherwise Tc+s would have preceded in the path βm. Therefore,

Tc+s:Tk;m ' Tk;m:Tc+s. So, the concatenation hTc+1; : : : ;Tkm�1i:hTk;m;Tk+1;m; : : : ;

Tlm;mi is computationally equivalent to

hTk;m;Tc+1; : : : ; Tkm�1i:hTk+1;m; : : : ;Tlm;mi. Now,

µjj(m�1):βm ' µjj(m�1)(k�1):βm(k�1) [by induction hypothesis]

= hT1;T2; : : :Tc;Tc+1; : : :Tkm�1i:hTk;m;Tk+1;m; : : : ;Tlm;mi

' hT1;T2; : : :Tc;Tk;m;Tc+1; : : :Tkm�1i:hTk+1;m; : : : ;Tlm;mi

' hT1;T2; : : :Tc[Tk;m;Tc+1; : : :Tkm�1i:βm(k)

[since, by step 12, βm(k) = hTk+1;m; : : : ;Tlm;mi]

= µjj(m�1)(k):βm(k) [by step 22].

Note that since Tk;m � Tc�1 in µjj(m� 1)(k� 1), as identified in the loop steps

13-17, Tc cannot be combined with Tc�1 through union.

Proof of µ1;p0 being a computation: Recall that µ1;p0 is obtained from the se-

quence µr
1;p0 = hΓ

p0
1 ;Γ

p0
2 ; : : : ;Γ

p0
n i= hfβ1;1;β2;1; : : : ;βl1;1gfβ1;2;β2;2; : : : ;βl2;2g; : : : ;fβngi

of sets of paths of N1, which, in turn, was constructed from the sequence µr
0;p =

hα
p
1 ;α

p
2 ; : : : ;α

p
ni of paths of Π0 satisfying the following properties: (i) p0 = β�n, (ii)

for all j;1 � j � n, for all k;1 � k � l j;βk; j ' α
p
j , (iii) each of the places in �Γ

p0
j has

correspondence with some place in �α j and (iv) all the places in Γ�
j have correspon-

dence with with all the places in α�
j .

Let µ1;p0 be hT1;T2; : : : ;Tli, where T1 is the first member of β1;1 (by step 1 and first

time execution of steps 7 and 11 of Algorithm 17). By property (iii) above, the places

in �β1;1 �
�T1 have correspondence with those in �α

p
1 � inP0. Since only the input

places of N1 have correspondence with the input places of N0, �T1 �
�β1;1 � inP1. It

has already been proved that p0 = fout(p) 2 outP1. Since Algorithm 17 introduces the

transition sets of the paths strictly in order from Γ
p0
1 to Γ

p0
n , Tl is a unit set containing

146 Chapter 6 SCP Induced Path Based Equivalence Checking Method

the last transition of βn and hence, p0 2 T �
l . Now, consider any Ti 2 µ1;p0 , 1 � i < l;

Ti+1 � Ti as ensured by the condition Tp � Tc associated with the while loop of steps

13-17. For any i;1 � i < l, let T �
i+1 � PMi+1 and T �

i � PMi . It is required to prove that

Mi+1 = M+
i , where PM+

i
= fp j p 2 t� ^ t 2 Tmg [fp j p 2 PM ^ p =2� Tmg, by first

clause of Definition 1 of successor marking. We have the following two cases:

Case 1: p1 2 T �
i+1 � PMi+1 – p1 2 T �

i+1)9t1 2 Ti+1 such that p2 t�1 . Now, Ti+1 = TMi ,

the set of enabled transitions for the marking Mi. So, p1 2 t�1 and t1 2 Ti+1 =

TMi) p1 2 PM+
i

by virtue of its being in the first subset of PM+
i

.

Case 2: p1 =2 T �
i+1 but 2 PMi+1 – So, p1 =2 T �

i+1 = TMi . Hence, p1 2 PMi because p1 2

T �
i�k for some k � 1. So p1 2 PM+

i
by virtue of its being in the second subset of

PM+
i

. Therefore, Mi+1 = M+
i .

6.3 Path construction algorithm

The SCP path construction procedure is slightly different from the DCP path construc-

tion procedure, reported in Chapter 4. We describe the SCP procedure identifying on

course the corresponding modules of the SCP and the DCP methods with the differ-

ences underlined. In Figures 6.4(a) and (b), we place the call graphs for both the

methods for easy referencing.

constAllPathsDCP

constOnePathDCP compAllSetsOfConcurTrans

obtainAllThePaths

(a)

advanceSeqOfConcTrans

constAllPathsSCP

constOnePathSCP compAllSetsOfConcurTrans

(b)

Figure 6.4: Call graphs for path construction method (a) for dynamic cut-points, and

for (b) static cut-points

The SCP construction procedure starts with invocation of constAllPathsSCP

(Algorithm 18) module which is similar to constAllPathsDCP (Algorithm 3) with

6.3 Path construction algorithm 147

certain differences indicated below. In the initialization part of both the modules, the

marking at hand, Mh, is initialized to the set inP of in-ports, the set Q of all paths is

initialized to empty and the sequence of sets of transitions at hand, Tsh, is initialized to

the empty sequence. The function module compAllSetsOfConcurTrans (Algorithm

4, Chapter 4) is then called to compute the set of all the concurrent transitions possi-

ble from Mh. Each of these sets is a possible set of enabled transitions from Mh. For

each of these sets, the function advanceSeqOfConcTrans (Algorithm 19) is called to

compute all the paths that contain this set. Note that the module constAllPathsDCP

instead invokes the function obtainAllThePaths (Algorithm 5) which is different

from the function advanceSeqOfConcTrans. There is no other difference between

these two top level modules. The function compAllSetsOfConcutTrans takes as

input a marking Mh at hand and returns all the mutually exclusive sets of enabled

transitions possible from Mh. The mechanism is identical for the two methods.

The function advanceSeqOfConcTrans takes as inputs a marking at hand, Mh,

a set Te of enabled concurrent transitions for Mh and the sequence Tsh of sets of

enabled transitions obtained prior to Mh. It computes recursively the set of all the

paths that involve Te as one of their members. In each recursive invocation, it ap-

pends Te at the end of Tsh and then advances the token from the pre-places �Te � Mh

to the post-places T �
e ; if the new marking Mnew contains a cut-point, then for each

such cut-point pc, say, the module constOnePathSCP (Algorithm 20) is invoked to

obtain a path which has pc as its post-place. If pc is also an out-port, then it is

deleted from Mnew. The marking at hand Mh is updated to include Mnew in place

of �Te. The function compAllSetsOfConcutTrans is then invoked to obtain the set

of all possible sets of concurrent transitions. For each set, assigned as Te, the func-

tion advanceSeqOfConcTrans is recursively invoked. The recursion terminates if

Te = /0. Note that this module is different from the function obtainAllThePaths in

the following aspects: First, after computing Mnew, if it is found to contain a cut-point,

then the function obtainAllThePaths designates all the other places in Mnew as dy-

namic cut-points and constructs a path from each of them. Secondly, if any place

in Mh is found to contain a back edge, then a degenerate case designation is initi-

ated and suitably terminated. These two steps are not necessary for the SCP method

and are accordingly deleted from obtainAllThePaths to have the function module

advanceSeqOfConcTrans.

Finally, the function constOnePathSCP is initially invoked from the function

148 Chapter 6 SCP Induced Path Based Equivalence Checking Method

advanceSeqOfConcTrans with some cut-point pc. The function constOnePathSCP

constructs through a series of recursive invocations a path having pc as its post-place

using a backward cone of foci from pc selecting the members of the path from Tsh. The

only difference of this module vis-a-vis the corresponding module constOnePathDCP

lies in the termination condition of the recursive invocation; specifically, for the present

SCP method, the termination takes place when the backward progress encounters a set

of places which are all cut-points or co-places of some cut-points; in the case of the

DCP based method, the path construction proceeds till all the places are count to be

cut-point. We illustrate the SCP based path construction method through Example 20

given below.

Example 20. In Figure 6.2, the static cut-points are p1; p2; p3, p6; p7 (in-ports), p10

(with a back edge incident on itself) and p12 (out-port); constAllPathsSCPwhich

is the main module initializes Mh to its in-ports, i.e., fp1; p2; p3; p6; p7g and the se-

quence Tsh of enabled transitions to the empty set. When Mh is fp1; p2; p3; p6; p7g,

the set T of sets of concurrent transitions is a unit set, i.e., fft1; t2gg. The function

advanceSeqOfConcTrans is invoked with the parameter Te as the only mem-

ber ft1; t2g 2 T . The function appends Te to Tsh. Hence, Tsh becomes hft1; t2gi.

The two cut-points p1; p6 2 InP and hence are not subjected to construct any path

from them. In Mh, the places �Te = fp2; p3g are replaced by T �
e = fp4; p5g to obtain

fp1; p4; p5; p6; p7g as the new Mh. Now, the new enabled set of transitions for this

Mh is Te = ft3; t4g; a recursive invocation of advance SeqOfConcTrans with

these new values of Mh and Te updates Tsh as hft1; t2g;ft3; t4gi by adding Te at its end.

After firing of Te, their post-places fp8; p9; p10g, designated as Mnew, say, acquire to-

kens. As the place p10 is a back edge induced cut-point, the path α2 = hft2g;ft4gi

is constructed by the function constOnePathSCP using backward cone of foci

method along Tsh. Next, the function compAllSetsOfConcurTrans computes

the new marking Mh as fp7; p8; p9; p10g by replacing �Te = fp1; p4; p5; p6g with T �
e =

fp8; p9; p10g from Mh = fp7; p8; p9; p10g, the set T of possible concurrent transitions

as fft6g;ft7gg. Each of these members is assigned to the set Te of enabled transitions

one by one for recursive invocation of the function advanceSeqOfConcTrans

(in the for-loop starting with line 25). Let advanceSeqOfConcTrans be next in-

voked with Te = ft7g, Tsh = hft1; t2g;ft3; t4gi and Mh = fp7; p8; p9; p10g. The new

Tsh becomes hft1; t2g;ft3; t4g;ft7gi. The new marking Mnew becomes fp10g where-

upon, p10 being a cut-point, the path α3 = hft7gi is constructed using the func-

tion constOnePathSCP. Also, p10 is removed from Mnew rendering it empty. So

6.3 Path construction algorithm 149

Mh = fp7; p8; p9g; the function compAllSetsOfConcurTrans returns T = /0

for this value of Mh; so the path α3 is put in Q. Now the transition set ft6g is

chosen as Te in the next recursive invocation of advanceSeqOfConcTrans with

Mh = fp7; p8; p9g and Tsh = hft1; t2g;ft3; t4gi. The set Te is put in Tsh making it

hft1; t2g;ft3; t4g;ft6gi. The set Mnew becomes fp11g which is not a cut-point; so no

path can be constructed and the for-loop consisting of lines 8-18 is skipped. Mh be-

comes fp7; p8; p9; p11g in line 19. For this value of Mh, the set T of sets of concurrent

transitions is computed as the unit set fft5gg by compAllSetsOfConcurTrans.

So the loop comprising lines 25-28 executes advanceSeqOfConcTrans only once

invoking the function with Te = ft5g;Mh = fp7; p8; p9; p11g. For this invocation, Tsh

becomes hft1; t2g;ft3; t4g, ft6g;ft5gi, Mnew becomes T �
e = fp12g which being an out-

port is a cut-point. Hence the loop 8-18 is executed invoking constOnePathSCP

with the above values of Tsh and P = fp12g. This function proceeds as follows. It first

extracts ft5g = last(Tsh)\
�P as T , modifies Tsh to hft1; t2g;ft3; t4g;ft6gi by remov-

ing its last member, obtains P0 (in line 3) as fp7; p8; p9; p11g (i.e. the pre-places of

T = ft5g); it then deletes from P0, the cut-point (in-port) p7 and the co-place p9 of

the cut-point p10 from these pre-places; So P0 becomes fp8; p11g. It then recursively

invokes itself with these new values of P = P0 and Tsh = hft1; t2g;ft3; t4g;ft6gi and

puts T = ft5g at the end of the returned sequence of the path being constructed by this

recursive invocation. The new recursive invocation obtains T = ft6g= last(Tsh)\
�P,

modifies Tsh to hft1; t2g;ft3; t4gi and P0 as fp8; p10g (in line 3). Since p10 is a cut-point,

it is removed from P0 in line 4 making P0 = fp8g. T = ft6g is put ahead of ft5g in the

partially constructed path sequence making it hft6g;ft5gi. Two more recursive invo-

cations are similarly carried out to obtain the path α1 = hft1g;ft3g;ft6g;ft5gi. On

return, the function advqanceSeqOfConcTrans puts this path in Q and renders

Mnew empty in steps 14-16. The loop comprising steps 8-18 is exited. Step 19 computes

Mh as fp7; p8; p9; p11g. Invocation of compAllSetsOfConcurTrans yields an

empty T whereupon the function advanceSeqOfConcTrans returns control with

Q = fα1g through step 23. Now only returns from the previous invocations take place

putting α3 and finally, α1 in Q. The function finally returns control to the function

constAllPathsSCP with Q = fα3;α2;α1g. �

The above algorithm is now analysed for termination, complexity, soundness and

completeness in the following subsections.

150 Chapter 6 SCP Induced Path Based Equivalence Checking Method

6.3.1 Termination and complexity analysis of the path construc-

tion algorithm

The termination proofs of all the functions involved in the SCP based method are iden-

tical with the corresponding modules used for the DCP based method. As discussed in

the previous section, the complexity of the algorithm is dominated by the complexity

of the function compAllSetsOfConcurTrans which is the same for the DCP method.

Following an identical reasoning as put forward for the DCP method (Chapter 4), the

complexity of the algorithm is O(jT j)2. In the following, we treat the soundness and

completeness of the method separately.

Algorithm 18 SETOFPATHS constAllPathsSCP (PRES+ N)
Inputs: A PRES+ model N
Outputs: Set of all paths Q
1: Mh(inP; /* Place � marking at hand � initialized to in-ports*/

Q(/0; /* set of all paths � initially empty */
Tsh(hi; /* Transition sequence at hand � initially empty */

2: T = compAllSetsOfConcutTrans (Mh;N);
// it takes Mh and forms all possible sets of concurrent transitions that are bound to Mh

3: 8T 2 T
Q(Q

S
advanceSeqOfConcTrans (Tsh;Mh;T;N);

/* Invokes advanceSeqOfConcTrans to obtain the set Q of all paths */
4: return Q;

6.3.2 Soundness of the path construction algorithm

Theorem 12. Any member of the set Q returned by the function constAllPathsSCP

satisfies the properties of the paths (as given in Definition 23).

Proof. Let there be a path α = hT1;T2; � � � ;Tni in the set Q returned by the function
constAllPathsSCP which does not satisfy all the properties of a path as listed in
Definition 23. (The fact that any member of Q has such a form (as that of α) is obvious
from step 10 of advanceSEQofConcTrans function and steps 1, 6 and 8 of the function
constOnePathSCP which ensure that the path α obtained comprises only a sequence
of sets of parallel transitions.) The definition of an SCP based path (Definition 23)
differs from Definition 13of a DCP based path in clauses 1, 2 and 4. Hence, here we
prove the only the three modified cases; proofs of all the other cases are similar to the
corresponding cases of the soundness proof of DCP based methods (Theorem 4).

6.3 Path construction algorithm 151

Algorithm 19 SETOFPATHS advanceSeqOfConcTrans (Tsh;Mh;Te;N)
Inputs: The first parameter is the sequence Tsh of sets of concurrent transitions. The second parameter
is the marking at hand Mh. The third parameter is a set Te of enabled maximally parallelisable
transitions. The fourth parameter is the PRES+ model N.
Outputs: The function returns the set of paths corresponding to the set of cut-points in the model N.

1: SETOFPATHS Q = /0;
2: if Te == /0 then
3: return Q;
4: end if
5: 8t 2 Te, mark t;
6: Tsh(append(Tsh;Te); /* modify Tsh by appending Te */
7: Mnew(T �

e ; /* post-places of Te acquire tokens */
8: for each pc 2Mnew do
9: if pc is a cutpoint then

10: α = constOnePathSCP (fpcg;Tsh;N);
/* Traverse backward from fpcg along Tsh to construct a path up to some cutpoints */

11: Q(Q[fαg; /* Update Q */
/* if any other out-place p of �pc is also a cutpoint, then α is a path to that
cutpoint also � so delete the place p to avoid repetition of effort (Steps 12, 13) */

12: Let S = fp j �p = �pc and p is a cutpoint };
13: Mnew = Mnew�S;
14: if (jp�

c j= 0) _ (all transitions of p�
c are marked) /* pc is an out-port */ then

15: Mnew(Mnew�fpcg;
/* p�

c have already occurred in some path � this step prevents them from appearing in the
subsequent set of enabled transitions */

16: end if
17: end if
18: end for
19: Mh((Mh�

� Te)[Mnew; /* modify Mh by deleting the pre-set places of the transitions enabled */
20: T = compAllSetsOfConcutTrans (Mh;N);
21: if (T = /0) and (Mh 6= /0) then
22: “Report as invalid PRES+ Model”; return Q;
23: else
24: for each Te 2 T do
25: Te(Te�fmarked transitions of Teg

Q(Q[advanceSeqOfConcTrans (Tsh;Mh;Te;N) //call itself recursively;
26: return Q;
27: end for
28: end if

Case 1: None of the members in �T1 is either a cut-points or co-place of a cut-point.

The path α has been constructed through n invocations of constOnePathSCP

function; the first n� 1 invocations have put the transition sets Tn;Tn�1; : : : ;T2

in step 8; the nth invocation returns a path comprising a sequence hT1i of length

1 in step 6. So, in this invocation, P0 is found to be empty in step 5, i.e., after step

4. After step 3 of the kth invocation, P0 contains all the pre-places of �T1: Prior

to step 4, P0 must have been Pc[fp j p is a co-place of a cut-pointg. Therefore,
�T1 = Pc[fp j p is a co-place of a cut-pointg.

152 Chapter 6 SCP Induced Path Based Equivalence Checking Method

Algorithm 20 PATH constOnePathSCP (P;Tsh;N)
Inputs: The first parameter is the set P of places. The second parameter is sequence Tsh of sets of
concurrent transitions. The third parameter is the PRES+ model N.
Outputs: The function returns a path α.

1: T = last(Tsh)\
�P; /*T is earmarked. The remaining ones in last(Tsh), if any, do not fall in the cone

of influence of P */
2: T

0

sh = Tsh�last(Tsh); /* Ignore last(Tsh) altogether in further backward traversal */
3: P0 = (P�T �)[�T ;
4: P0 = P0�Pc; P0 = P0�fp j p is a co-places of a cut-pointg;

/* Delete from P0 all the cut-points and co-places of these (since paths do not move backward
beyond them in the construction) */

5: if P0 = /0 then
6: return (PATH) hT i;
7: else
8: return append(constOnePathSCP(P0;T

0

sh;N);T);
/* append T at the end of the sequence obtained by continuing backward */

9: end if

Case 2: None of the members T �
n is a cut-point. Tn has been placed in the path by the

function constOnePathSCP in its first invocation from the function

advanceSeqOfConcTrans in step 9 where it is ensured that the first parameter

P is a unit set containing a cut-point. Also, step 1 of constOnePathSCP ensures

that T �
n contains this cut-point.

Case 4: The condition 8i, 1 < i� n;8p2 �Ti, if p is neither a cut-point nor a co-place

of a cut-point, then 9l, 1 � l � i� 1, p 2 T �
i�l does not hold. In other words,

there exists a set Ti of concurrent transitions in the path which has a pre-place

p which is neither a cut-point nor a co-place of a cut-point but is not included

as a post place of any of the preceding transitions T1 to Ti�1. Let Ti be the last

such transition in the path with such a pre-place p. Now constOnePathSCP

is invoked first time from step 10 of advanceSeqOfConcTrans with the first

parameter P = fpcg, i.e., P containing a single cut-point. There is a recursive

invocation subsequently when Ti has been included in the path with the first

parameter P0 containing p 2 �Ti (due to step 3 � the union term). The subse-

quent recursive invocations of constOnePathSCP always has its first parameter

P whose members satisfy the following two properties:

1. They are not cut-points (due to step 4 of the previous invocation), and

2. They are not in T � (due to step 3), where T =last(Tsh)\
�P.

Since p satisfies both (1) and (2) for all the recursive invocations (because, as

per the premise, p =2 T �
1 [T �

2 [�� � [T �
i�1), P0 (in step 8) will always contain

6.4 Static equivalence checking 153

p. Thus, P0 never becomes /0 and hence constOnePathSCP never terminates

(contradiction to Lemma 1, Chapter 4).

6.3.3 Completeness of the path construction algorithm

Theorem 13. The set of paths returned by the function constAllPathSCP is a

path cover of the model.

Proof. Let µp = hT1;T2; : : : ;Tki be a computation not covered by the paths computed

by the algorithm. From Theorem 10, there is a reorganized sequence of paths corre-

sponding to µp, namely, µr
p = hα1;α2; : : : ;αli= hhT1;1;T1;2; : : : ;T1;n1i:hT2;1;T2;2; : : : ;T2;n2i:

: : :hTi;1;Ti;2; : : : ;Ti;nii: : : :hTl;1;Tl;2; : : : ;Tl;nlii such that µp ' µr
p. Let αi be the first path

of the above sequence which is not constructed by the algorithm. Now, the set �Ti;ni

must be a subset of some reachable marking M j of the model. The function

advanceSeqOfConcTrans goes through all the reachable markings. So the module

must have been invoked at some point with the parameters Mh = M j and Te � Ti;li .

This invocation computes a value for Mnew in step 7 which contains T �
i;li . Since Ti;li is

the last transition of the path αi, T �
i;li , and hence Mnew, would contain a cut-point. So,

the invocation will execute the loop comprising steps 8-18. Specifically, in step 10, it

will invoke constAllPathSCP with the cut-point in T �
i;li . From the soundness of the

function constAllPathSCP, the path αi will be constructed. [Contradiction]

6.4 Static equivalence checking

In this section, we describe a procedure for checking equivalence between two i/o-

compatible PRES+ models using static cut-point induced paths; in the sequel, we

refer to this method as SCPEQX method.

154 Chapter 6 SCP Induced Path Based Equivalence Checking Method

6.4.1 Equivalence Checking Algorithm

The chkEqvSCP function is the central module for the method. The inputs to this

function are the PRES+ models, N0 and N1, with their in-port and out-port bijections

fin and fout . The outputs are two sets Π0 of N0 and Π1 of N1 comprising the respective

paths of N0 and N1 which are equivalent, a set E of ordered pairs of equivalent paths

of N0 and N1 and the sets of paths Πn;0 of N0 and Πn;1 of N1 comprising member paths

for which no equivalent is found (in the other PRES+ model).

The function starts by initializing the set ηp of ordered pairs of corresponding

places of N0 and N1 to the in-port bijection fin and out-port bijection fout ; the set ηt

of ordered pairs of corresponding transitions of N0 and N1 and the sets E;Πn;0 and

Πn;1 are initialized to empty. It then constructs the set Π0 of paths of N0 and the set

Π1 of paths of N1 by introducing static cut-points at places at which some back edges

terminate. For each path α in Π0 (of N0), the algorithm calls findEqvSCP function

which tries to find an equivalent path from Π1 of N1 starting from the place which

have pairwise correspondence with those of �α. The function findEqvSCP returns a

set Γ of paths. If the set Γ has more than one member (jΓj> 1), then it implies that for

a path α in N0, there are more than one equivalent paths in N1, all of them originating

from the same set of places and having identical conditions of execution (as that of

α); the following entities are updated: (1) The set ηt of corresponding transitions by

adding the pair comprising the last transition of the path α and that of β; (2) the set

E of ordered pairs of equivalent paths by adding the ordered pair hα;βi; (3) The set

ηp of corresponding places by adding the pair comprising the post-places of the last

transition of the path α and that of β . If Γ is empty, the module updates Πn;0 by

adding the path α to it.

When all the paths in the path cover Π0 of N0 have been examined exhaustively,

all the paths in Π1 are put in Πn;1 which were not identified to be equivalent with any

path in Π0. The function then checks Πn;0 and Πn;1; we have the following four cases:

Case 1: Πn;0;Πn;1 = /0) N0 � N1; Case 2: Πn;0 = /0;Πn;1 6= /0) N0 v N1 but may be

that N1 6vN0; Case 3: Πn;0 6= /0;Πn;1 = /0) N1 vN0 but N0 6vN1; Case 4: Πn;0;Πn;1 6=

/0) neither N0 v N1 nor N1 v N0.

The modulewise functional description of the equivalence checking mechanism is

captured through the Algorithms 21 and 22.

6.4 Static equivalence checking 155

Algorithm 21 STRUCT4TUPLE chkEqvSCP(N0;N1)
Inputs: The PRES+ models N0 and N1.
Outputs: A six tuple structure comprising
1. E : a set of ordered pairs of the form hαi;β ji of paths of Π0 and Π1 respectively, such that
αi ' β j.
2. ηt : the set of corresponding transition pairs;
3. Πn;0: the set of paths of N0 for which no equivalent is found in N1 even with extension.
4. Πn;1: the set of paths of N1 for which no equivalent is found in N0.

1: Let ηp = fhp; p0i j p2 inP0^ p0 = fin(inP0)^ hp; p0i 2 fin(p)g [fhp; p0i j p2 outP0^ p0 =

fout(outP0)g;
Let ηt , the set of pairs of corresponding transitions, be /0;
Π0 = constAllPathsSCP(N0);
Π1 = constAllPathsSCP(N1);
Let Πn;0, Πn;1 and E be empty;

2: for each α 2Π
0

0 such that 8p 2� α;9p0
;hp; p0i 2 ηp do

3: Γ(findEqvSCP (α;ηp;Π
0

1; fin);
Π1 = Π1�Γ;

4: if Γ 6= /0 then
5: for each β 2 Γ do
6: ηt = ηt [f h last(α), last(β) i g;

E E [fhα;βig;
ηp = ηp[fhp; p0ijp 2 α�

; p0 2 β�
; f 0

pv(p) = f 1
pv(p0)g;

7: end for
8: else
9: Πn;0 = Πn;0[fαg;

10: end if
11: end for /* 8α 2Π

0

0 */
12: Πn;1 = Π1;
13: Case 1 (Πn;0 = /0 and Πn;1 = /0):

Report “N0 and N1 are the equivalent models.”
break;

Case 2(Πn;0 = /0 and Πn;1 6= /0):
Report “N0 v N1 and N1 6v N0 .”
break;

Case 3(Πn;0 6= /0 and Πn;1 = /0):
Report “N1 v N0 and N0 6v N1.”
break;

Case 4 (Πn;0 6= /0 and Πn;1 6= /0):
Reports “two models may not be equivalent.”

14: return hE;ηt ;Πn;0;Πn;1i;

156 Chapter 6 SCP Induced Path Based Equivalence Checking Method

Algorithm 22 SETOFPATHS findEqvSCP (α;ηp;Π1)
Inputs: α: a path whose equivalent has to be found. ηp: the set of corresponding places pair and Π1:
path cover of N1 If flag = 0, it belongs to N1; if flag = 1, it belongs to N0.
Outputs: Set Γ of equivalent paths.
1: Γ = /0;
2: Γ0 = fβ j β 2Π0

1^ (8p 2 �α;9p0 2 �β s.t. hp; p0i 2 ηp_8p0 2 �β;9p 2 �α s.t hp; p0i 2 ηp)^
8p 2 α� if p 2 outP0, then 9p0 2 β0 s.t. p0 = fout(p) 2 outP1g
/* for candidate path selection */

3: for each β 2 Γ0 do
4: if Rβ(fpv(

�β))� Rα(fpv(
�α)) then

5: if rβ(fpv(
�β)) = rα(fpv(

�α)) then
6: Γ0 = Γ0[fβg
7: else
8: report "β not equivalent to α in spite of having pre-place correspondence and equivalent

condition of execution";
9: Γ0 = /0; // all not equivalent

10: end if
11: end if
12: end for
13: return Γ;

int i=1,x=10;
while (i<=10)

i++;
output x;

(a)

int i=1,x;
while (i<=10)

i++;
x=10;
output x;

(b)

Figure 6.5: Code motion across loop transformation.

10

p
0

2

p
0

3
p

0

1

p
0

4

t
0

11

+1t
0

2 10

(b)

N1

[vp4 > 10]

p4

t2

t3 t4

[vp4 � 10]

p5

1

+1 id(vp3)

p2

t1

p1

p3

[vp0

3
> 10]

N0

(a)

t
0

3

[vp0

3
� 10]

α2

β1

α0

α1

β0

β2

Figure 6.6: Illustrative example for the equivalence checking algorithm.

We illustrate the equivalence checking mechanism by the following example which

involves a type of transformation namely, code motion across a loop. The verification

6.4 Static equivalence checking 157

of such transformations using CDFG based models such as FSMDs is a non-trivial

task [20].

Example 21. Figure 6.5(b) gives the program obtained from the program of Figure

6.5(a) by moving the instruction x= 10 preceding the loop to the segment following the

loop. Figure 6.6(a) depicts the PRES+ model N0 corresponding to the Figure 6.5(a)

and Figure 6.6(b) represents the PRES+ model N1 corresponds to Figure 6.5(b). The

set of variables (for both N0;N1) is V = fi;xg. The place to variable associations are

f 0
pv = fp4 7! i;fp3; p5g 7! x;fp1; p2g 7! δg and f 1

pv = fp03 7! i;fp01; p04g 7! x; p02 7! δg.

The bijection fin is fp1 7! p
0

1; p2 7! p
0

2g and the bijection fout : p5 7! p04. In Figure

6.6(a), the cut-points are p1; p2; p4 and p5; the paths are α0 = hft2gi, α1 = hft3gi

and α2 = hft1g;ft4gi. Hence, the path cover Π0 of N0 is fα0;α1;α2g. In Figure 6.6

(b), the cut-points are p01; p02; p03; p04 and the paths are β0 = hft
0

1gi, β1 = hft
0

2gi and

β2 = hft
0

3gi. Hence, the path cover Π1 of N1 is fβ0;β1;β2g. The equivalence checking

method progresses through the following steps.

The set ηp of corresponding places is initialized to fin. The sets ηt ;E;Πn;0, Πn;1

are initialized to /0. For α0, the method identifies the path β0 as the candidate for

examining equivalence with α0 because their respective pre-places are related by

the relation fin and the method identifies that Rα0(f 0
pv(

�α)) � Rβ0(f 1
pv(

�β)) � > and

rα0(f 0
pv(

�α)) = rβ0(f 1
pv(

�β)) unary constant function 1. Hence, it infers α0 ' β0.

Consequently, the following update operations take place: (i) ηt = fhlast(α0) =

t2; last(β0) = t 01ig, (ii) ηp = fhp4; p03ig and (iii) E = fhα0;β0ig. Similarly, α1 and

α2 are found to have equivalence with β1 and β2, respectively and the sets ηt ;ηp and

E are updated. At this stage, the following entities are as follows:

ηt = fh�(α�
0),

�(β�0)i, h
�(α�

1),
�(β�1) i, h

�(α�
2),

�(β�2) ig, ηp = fh α�
0, β�0 i, h α�

1, β�1 i,

h α�
2, β�2 ig, and E = fhα0;β0i;hα1;β1i;hα2;β2ig. At last, the method identifies that

Πn;0;Πn;1 = /0 and accordingly declares that the two models N0 and N1. �

In the following example, we describe the validation steps for a thread level paral-

lelizing transformation.

Example 22. Figure 6.8(a) depicts a PRES+ model N0 which can be obtained from

the simple program Ps given in Figure 6.7(a). Figure 6.8(b) depicts the PRES+ model

N1 corresponding to the program Pt given in Figure 6.7(b) which is obtained by loop

spitting followed by thread level parallelizing transformation of Ps.

158 Chapter 6 SCP Induced Path Based Equivalence Checking Method

int i=0,k,m,n;
while (i<=10){

m=m+10;
n=n+10;
i++;

}
k=m+n;

(a)

int i=j=0,k,m,n;
while (i<=10){

m=m+10;
i++;

}
||
while (j<=10){

n=n+10;
j++;

}
k=m+n;
(b)

Figure 6.7: A thread level parallelizing transformation–(a) Ps: source program and (b)

Pt : transformed program.

p2

p8

p9 p11

t1

t8

id

id
p12

t2 t3

id
ρ1 ρ2

ρ2

ρ1

p3

t4
p5

t6
p10

p4

t5

p7

t7

p1

[c1]
[:c1]

p6

c
0

2 : [v
0

p4
� 10]

c1 : [vp2 � 10]

c
0

1 : [v
0

p3
� 10]

0

p
0

1

p
0

11

p
0

13

p
0

16

t
0

10

id id

+1 +1

id id

p
0

2 p
0

3
p

0

5p
0

4

t
0

2

p
0

6 p
0

7 p
0

9

p
0

10

t
0

5

t
0

7

t
0

8
t

0

9
t

0

12

p
0

8

[c
0

2]t
0

3

[c
0

1]

p
0

12

t
0

4

t
0

6

vp5 +10

vp10 +1

vp8 +10

vp5 + vp8

vp0

6
+ vp0

11

vp0

11
+10

(a) (b)

N0
N1

id id
t

0

10 t
0

11

vp0

6
+10 [c1]

p
0

14 p
0

15

[:c2]

Figure 6.8: Illustrative example for validation of a parallelizing transformation.

Recall that the program Ps and its corresponding net N0 have also been given

as Example 3; the construction of the model N0 has been explained in detail in that

example; hence we skip the details here. Recall that the set of variables V = fi;m;n;kg

and the place to variable mapping is f 0
pv : ffp1; p6; p7; p9; p11g 7! δ for dummy in-

ports and synchronizing places. fp2; p10g 7! i;fp3; p5g 7!m;fp4; p8g 7! n; p12 7! kg.

Now, consider the program Pt . In this transformed program, the single while-loop

of Ps is split into two different parallel loops corresponding to two different indepen-

dent statements “m = m+ 10” and “n = n+ 10” which constitute the bodies of the

respective while-loops that are parallellized. The loop control variables correspond-

ing to these two loops are i and j which start with an identical initial value 0. In the

6.4 Static equivalence checking 159

corresponding PRES+ model N1 of Figure 6.8(b), the places p
0

3 and p
0

4 represent these

loop control variables i and j; the transition t
0

1 not only initializes the places p
0

3 and p
0

4

but also creates two parallel threads corresponding to the parbegin statement. The

subnet corresponding to the while-loops are obtained by the same reasoning used to

obtain the subnet in N0 of the while-loop of Ps. In the present case, however, the loop

exit transitions t 010 and t 011 associated with :c1 and :c2 respectively, only achieve exits

from the loops; more specifically, unlike the exit transition t3 of N0 in Figure 6.8(a),

it cannot accomplish the task of the assignment statement “k = m+ n” because that

happens only after merging of the two parallel threads. The transition t 012 serves two

purposes — it accomplishes the merging of the two parallel threads corresponding to

the parend statement and accordingly have p014 and p015 as its pre-places; secondly,

it captures the computation corresponding to the assignment statement “k = m+ n”

producing the output token corresponding to the output variable k at the out-port

p016. So, for N1, the set of variables is V = fi; j;m;n;kg and the place to variable

mapping f 1
pv = ffp01; p07; p012; p010; p013g 7! δ;fp02; p06g 7! m;fp03; p08g 7! i;fp04; p09g 7!

j;fp05; p011 p015g 7! n; p016 7! kg.

Using the path construction algorithm, the sets of paths obtained from Figures

6.8(a) and 6.8(b) are Π0 = fα1;α2;α3;α4;α5;α6;α7g, Π1 = fβ1;β2;β3;β4;β5;β6;β7;β8g,

where α1 = hft1gi;α2 = hft4gi;α3 = hft5gi;α4 = hft2g;ft6gi, α5 = hft2g;ft7gi, α6 =

hft2g;ft8gi, α7 = hft3gi and β1 = hft
0

1gi;β2 = hft
0

2gi;β3 = hft
0

5gi;β4 = hft
0

3g;ft
0

6gi,

β5 = hft
0

4g;ft
0

7gi;β6 = hft
0

3g;ft
0

8gi, β7 = hft
0

4g;ft
0

9gi and β8 = hft
0

10; t
0

11g;ft
0

12gi.

Let fin : inP0 $ inP1 be fp1 7! p01; p3 7! p02i; p4 7! p05g; let fout : outP0 $ outP1 be

p12 7! p016. Therefore, the place-correspondence relation ηp is initialized as fhp1; p01i;

hp3; p02i;hp4; p05i;hp12; p016ig. For each path of Figure 6.8(a), the equivalent path of

Figure 6.8(b) is obtained by the following steps:

For the path α1: The function chkEqvSCP calls the function findEqvSCP

which first identifies some candidate paths from Π1, whose pre-places are in place-

correspondence with the pre-place of the path α1. The path β1 is identified as the

only candidate path for α1 because h�α1 = p1;
�β1 = p01i 2 ηp. Since the conditions

of execution of the paths α1 and β1 are equivalent and their data transformations are

same, the function findEqvSCP returns the set Γ = fβ1g as the set of paths equiv-

alent to α1. On return, the caller function chkEqvSCP updates the following sets:

E becomes fhα1;β1ig, α�
1 = fp2g should be associated with β�1 = fp03; p04g; since

160 Chapter 6 SCP Induced Path Based Equivalence Checking Method

f 0
pv(p2) = f 1

pv(p03) = i, so, hp2; p03i is put in ηp. However, f 1
pv(p04) = j 6= f 0

pv(p2);

but j is an uncommon variable and at this point, j = i since p03; p04 2 β�1. So we can

proceed with the association j 7! i and hp2; p04i is also put in ηp; ηt becomes fh

last(α1),last(β1)g. Similarly, it is found that α2 = hft4gi ' β2 = hft 02gi) hα�
2;β

�
2i=

hp5; p06i 2 ηp and α3 = hft5g ' β3 = hft 05gi) hα�
3;β

�
3i= hp8; p011i 2 ηp.

For the path α4: The candidate path is chosen as β4 by findEqvSCP using the

following steps. First, it is found that �α4 = fp2; p5g, �β4 = fp03; p06g and hp2; p03i;hp5; p06i 2

ηp; it is next identified that the conditions of execution Rα4(vp2 � 10) and Rβ4(vp03
�

10) are same because hp2; p03i 2 ηp and hence the values vp2 = vp03
always holds.

Similarly, from the place correspondence of p5; p06, their data transformations rα4 =

vp5 +10 and rβ4 = vp06
+10 are identified to be identical. The fact that α5 ' β5 will be

inferred identically this time using the correspondence p2 2
�α5 also with p04 2

�β5.

In the process, hp9; p012i;hp11; p013i are included in ηp, the former due to α4 ' β4 and

the latter due to α5 ' β5.

For the path α6: While choosing the candidate path, the function findEqvSCP

identifies that �α6 = fp2; p9; p11g and the pre-places of both paths �β6 = fp03; p012g;
�β7 =

fp04; p013g are in ηp with the pre-places of α6; also, Rα6 � Rβ6 as well as Rα6 � Rβ7;

similarly, rα6 = rβ6 and rα6 = rβ7 . So it returns Γ = fβ6;β7g. The caller function

registers both these paths to be equivalent to α6 and suitably updates E;ηt and ηp

which happens to remain unchanged.

For the path α7: The pre-places �α7 = fp2; p5; p8g are used identically by findEqvSCP

to identify β8 as the only candidate path since �β8 = fp03; p06; p011; p04g and hp2; p03i;hp5; p06i;

hp8; p011i;hp2; p04i 2 ηp. It also identifies the equivalence of their conditions of exe-

cution and equality of data transformations; so it returns β8 as the equivalent of α7.

On return, the caller function finds that all the paths of N0 have equivalent paths in

N1 with proper correspondence of their pre-places; also all the paths of N1 are found

to have equivalence with some path in N0; accordingly, it declares the models (and

hence the programs Ps;Pt) to be equivalent.

�

Figure 6.9 describes a situation, where the code C3 is moved and executed in par-

allel with C0 and C1. Figures 6.10(a) and (b) give the PRES+ model corresponding

6.4 Static equivalence checking 161

0 , C1; C

 C2 , C3;

4; C

 C0 , C1, C 3;

4; C ’

#parbegin

#parend

#parbegin

#parend

#parbegin

#parend

(a) (b)

Figure 6.9: Code motion transformation for parallel programs.

the code schema of Figures 6.9(a) and (b). The path construction procedure as de-

scribed in section 6.3, constructs only one path α as shown in Figure 6.10(a) using the

backward cone of foci method. Similarly, using the same procedure, a single path β

is constructed as shown in Figure 6.10(b). The path α is equivalent with the path β as

their pre-places have correspondence, their conditions of execution are both ’true’ and

their data transformations identical.

The above algorithm is now analysed for termination, complexity and soundness

in the following subsections.

6.4.2 Termination of the equivalence checking algorithm

The path construction algorithm terminates reported in [17]. Therefore, the respective

path covers Π0 and Π1 of N0 and N1 produced by this algorithm are finite and the

equivalence checking phase starts with finite Π0 and Π1.

Theorem 14. chkEqvSCP function (Algorithm 21) always terminates.

Proof. The function findEqvSCP terminates because step 2 has to examine only a

finite (number of paths of) Π1 to construct Γ0; thus, the set Γ0 is finite and hence the

loop comprising steps 3-7 executes finite number of times. So this function terminates.

The function chkEqvSCP has an inner loop comprising steps 5-7 which is executed a

finite number of times since Γ is finite. The outer loop comprising steps 2-11 executes

162 Chapter 6 SCP Induced Path Based Equivalence Checking Method

− +

 +

 +

 −

 +

(a)
(b)

p0 p1 p2
p3

p4 p5 p6

p7

p8 p9

p11

p12

 + +

p
0

p
1

p
2

p
3

p
8

p
9

p p
5 6

p
10

p
11

p
12

p
t1

t1t2

t2

t3

t3

t4

t4

t5

p
10

 +

’ ’

’

’ ’ ’ ’

4 ’ ’ ’ ’

’

’

’ ’ ’

α β

Figure 6.10: Initial and transformed behaviour of PRES+ models.

also executes finite number of times since Π0 is finite. So both the loops terminate

and hence so does the function.

6.4.3 Complexity analysis of the equivalence checking algorithm

We discuss the complexity of the equivalence checking algorithm in a bottom-up man-

ner.

Complexity of Algorithm 22 (findEqvSCP): Step 1 is an initializing step

which takes in O(1) time. Step 2 takes O(jΠ1j) = O(jPj3) time, which is the complex-

ity of path construction as explained in section 4.2.2. Step 4 compares the condition of

execution and the data transformation for each path. Hence the complexity for each of

this comparison is O(jF j), where jF j is the maximum of the lengths of the formulae

representing the data transformations and conditions of execution of paths of N0;N1.

Computation of such formulae is exponential in the number of variables which, in

turn, is upper-bound by the number of places, i.e., O(jF j) is O
�

2jPj
�

. Step 5 is a

union operation needing just O(1) time with β being blindly put at the end of Γ. The

loop iterates as many times as O(jΠ1j) = O
�
jPj3

�
. Hence, the overall complexity is

= O
�
jPj3 +2jPj: jPj3

�
= O

�
2jPj:jPj3

�
.

6.4 Static equivalence checking 163

Complexity of Algorithm 21 (chkEqvSCP): In step 1, construction of ηp takes

O(jPj) time. In the same step, the function constructs all the paths for the two PRES+

models in O
�
jPj3

�
time as given in section 4.2.2. The complexity of each itera-

tion of the loop of step 2 is as follows. Step 3 uses findEqvSCP function and takes

O
�

2jPj:jPj3
�

time as explained above. Π1 is updated by the set minus operation in

O(jPj3) time. So step 3 takes O
�

2jPj:jPj3
�

time. Checking of the condition Γ 6= /0

in step 4 takes O(1) time. The complexity of the inner loop starting at step 5 is as

follows. The update operations of ηt and E in step 6 take O(1) time whereas that of

ηp takes O
�
jPj2

�
time. So the body of the loop (step 6) takes O

�
jPj2

�
time; the loop

executes O(jPj3) time; hence it takes O(jPj5) time. Step 9 takes O(1) time. So, the if-

statement comprising 4-10 takes O(jPj5) time. Thus, the body of the outer loop (steps

2-11) takes O
�

2jPj:jPj3
�

(step 3) + O
�
jPj5

�
= O

�
2jPj:jPj3

�
time. The loop executes

O
�
jPj3

�
time. So the complexity of the loop is O

��
2jPj:jPj3

�
:jPj3

�
= O

�
2jPj:jPj6

�
.

Step 12 takes O
�
jPj3

�
time and step 13 takes O(1) time. So the overall complexity of

this module is O
�

2jPj:jPj6
�

.

6.4.4 Soundness of the equivalence checking algorithm

Theorem 15. If the function chkEqvSCP (Algorithm 21) reaches step 14 and (a)

returns Πn;0 = /0, then N0 v N1 and (b) if it returns Πn;1 = /0, then N1 v N0.

Proof. Let the function chkEqvSCP reach step 14 and Πn;0 = /0. It is required to prove

that N0 v N1, i.e., for any computation µ0;p of N0, there exists a computation µ0;p0 of

N1 such that µ0;p ' µ1;p0 and p0 = fout(p). The fact that if the function chkEqvSCP

reaches step 14 and Πn;1 = /0, then N1 v N0 can be proved identically.

Consider any computation µ0;p of N0. Step 2 of the function chkEqvSCP calls the

function constAllPathsSCP and yields the set Π0 of paths of N0 from the set of cut-

points. From Theorem 10, there exists a reorganized sequence of µr
0;p of paths of Π0

such that µr
0;p ' µ0;p. Hence, Π0 is a path cover of N0. So, from Theorem 11, it is

required to prove that for every member α in Π0, there is a path β of N1 such that (i)

α ' β, (ii) the pre-places of α have correspondence with the pre-places of β and (iii)

the post-places of α have correspondence with those of β. It may be noted that the

algorithm chkEqvSCP finds a path β of Π1 by calling the function findEqvSCP such

164 Chapter 6 SCP Induced Path Based Equivalence Checking Method

that conditions (i) and (ii) are satisfied (as ensured by steps 2 and the loop comprising

steps 3-7). Condition (iii) is satisfied by step 6 in chkEqvSCP.

6.5 Experimental Results

The static cut-point induced path based equivalence checking method is implemented

in C and tested on some sequential as well as parallel examples on a 2.0 GHz In-

tel(R) Core(TM)2 Duo CPU machine (using only a single core). We refer to this

implementation as the SCPEQX module. Similar to the experimentation with the dy-

namic cut-point based path based equivalence checking modules described in Chapter

5, the entire experimentation with the static cut-point induced path based equivalence

checking module has also been carried out along two courses � one using hand con-

structed models and the other using models constructed by the same automated model

constructor. Preparation of the example suite remains the same as that mentioned in

Chapter 4. For checking equivalence between two paths, we have used the normalizer

reported in [121]. The entire module is available in [14].

6.5.1 Experimentation using hand constructed models

Before discussing the observations regarding the performance of the SCPEQX module

vis-a-vis those of the FSMDEQX (PE) module [14] and the DCPEQX module, it is worth-

while to examine the progress of the SCPEQX module through its output produced

for the MODN example and compare it with the corresponding output of the DCPEQX

module. For the MODN example, Figure 6.11 depicts the output produced by the path

construction module and Figure 6.12 depicts the output of the equivalence checking

module of the SCPEQX method. (The details of the MODN examples and the corre-

sponding models are given in Figures 4.11, 4.12 and 4.13 of Chapter 4.) The output

of the equivalence checking module depicts the condition of execution and the data

transformation for each path in normalized form. In Figure 6.11, it is to be noted that

the number of paths and the number of cut-points in MODN original are 11 and 16, re-

spectively; however, the number of paths and cut-points in dynamic cut-point induced

6.5 Experimental Results 165

path construction method are 17 and 25 which is depicted in Figure 4.14. Although

SCPEQX has no scope for path extension (as cutpoints are present only at loop entry

points apart from the in-ports and the out-ports) and paths cannot extend beyond the

loop entry points, the corresponding provision was retained for verification. In Figure

6.12, it may be noted that the path extension is indeed not needed for this example.

This is also found to hold for all the examples experimented with, as well.

********************** Finding all paths of model N0 *****************************

Finding Cut-points type=0: Out-ports type=1 : In-ports, type=2: Backedge

**

The cutpoint list is:-

p1(type=1) p2(type=1) p3(type=1) p4(type=1) p5(type=1) p6(type=2)

p7(type=2) p8(type=2) p9(type=2) p10(type=2) p11(type=2) p12(type=2)

p13(type=2) p14(type=2) p15(type=2) p18(type=0) p22(type=2)

**

path 0 : <{t1}> path 1 : <{t2}> path 2 : <{t3}> path 3 : <{t4}>

path 4 : <{t5}> path 5 : <{t7}> path 6 : <{t6}{t8}{t9}{t11}{t13}>

path 7 : <{t6 }{t8} {t9} {t11} {t13} {t14}>

path 8 : <{t6} {t8}{ t9 }{t11}{t13}{ t15}{t16}{t18}>

path 9 : <{t6} {t8} {t9} {t11}{t13}{t15} {t16} {t18}{t19}>

path 10 : <{t6}{t8}{t9}{t11}{t13}{t15}{t16} {t18}{t19}{t20}>

###################### Path construction time ######################################

No of places in N0: 28 No. of transitions in N0: 21

No of paths in initial path cover of N0: 11 Exec time is 0 sec and 4208 microsecs

##

Figure 6.11: Output of Static Cut-point Induced Path Constructor

Table 6.1 replicates the sizes of the original and the transformed PRES+ models in

terms of numbers of their places and transitions (trans) for ready references; the num-

ber of static cut-points (SCP) and the paths have been recorded which are much less

than those for the DCPEQX module as expected (see Table 4.2). The last two columns

depict the path construction times for both original and transformed PRES+ models.

It is to be noted that since the number of paths is less for the SCPEQX module, path

construction times in Table 6.1 are smaller than the corresponding path construction

times in Table 4.2.

We have also tested our SCPEQX method on the same set of five sequential ex-

amples and their parallelized versions obtained using PLuTo and Par4All. Table 6.2

summaries the path construction times for the SCPEQX method for these examples;

166 Chapter 6 SCP Induced Path Based Equivalence Checking Method

Example Original PRES+ Transformed PRES+ Path Const. Time (µs)

Place Trans SCP Paths Place Trans SCP Path Original Transformed

MODN 28 21 17 11 27 20 16 11 4208 3762

SUMOFDIGITS 11 9 8 5 10 9 6 5 752 697

PERFECT 19 14 12 10 14 10 11 8 2157 1987

GCD 31 27 14 10 19 17 12 10 5832 3120

TLC 30 28 16 16 40 39 16 16 6278 5672

DCT 25 18 6 1 20 13 6 1 796 782

LCM 34 28 14 10 22 18 12 10 5617 3316

LRU 39 37 18 12 45 42 20 12 5476 5987

PRIMEFAC 12 10 7 5 12 10 8 5 956 924

MINANDMAX-S 28 21 11 14 28 21 11 14 4213 4123

Table 6.1: SCP induced path construction times for hand constructed models of se-

quential examples

Example Original PRES+ Transformed PRES+ Path Construction Time (µs)

PLuTo Par4All Org PLuTo Par4All

place trans SCP path place trans SCP path place trans SCP path

BCM 10 6 6 1 11 7 6 1 11 7 6 1 455 434 434

MINANDMAX-P 28 21 11 14 28 21 11 14 28 21 11 14 4189 4189 4189

LUP 55 53 30 18 52 50 29 18 52 50 29 18 9873 9113 8978

DEKKER 34 32 20 12 30 29 18 12 30 29 18 12 3902 3123 3123

PATTERSON 32 30 15 10 30 28 14 10 30 28 14 10 4812 4624 4642

Table 6.2: SCP induced path construction times for hand constructed models of par-

allel examples

the numbers of their places and transitions (trans) are included for ready reference.

The number of static cut-points (SCP) and paths are observed. The last three columns

depict the path construction times which are again found to be smaller than the corre-

sponding path construction times recorded in Table 4.5 because the number of static

cut-point induced paths is less than that of the DCP induced paths (as reported in Table

4.5).

Table 6.3 depicts our observations on the performance of SCPEQX module made

through this line of experimentation vis-a-vis the performance of FSMDEQX (PE) [14]

and DCPEQX modules. In all the cases, the costly path extension is not needed for the

SCPEQX module. We have put the two columns Extension (FSMDEQX (PE)) and Exten-

sion (DCPEQX) for ready references. The columns FSMDEQX (PE) Time and SCPEQX

Total Time record the equivalence checking times taken by the FSMD equivalence

checking module and the SCPEQX module, respectively. These figures include the path

6.5 Experimental Results 167

Example Paths Extension Extension FSMDEQX (PE) DCPEQX Time (µs) SCPEQX

(FSMDEQX (PE)) (DCPEQX) Time (µs) EqChk Total Path Const Time (µs) EqChk Total

Orig Transf Orig Transf Time (µs) Time (µs)

MODN 11 11 YES YES 16001 8506 18872 4208 3762 8345 16324

SUMOFDIGITS 5 5 YES YES 8000 6288 8507 752 697 5660 7109

PERFECT 10 10 YES YES 8456 5077 9685 2157 1987 4197 8341

GCD 10 10 YES NO 12567 3957 13758 5832 3120 3226 12178

TLC 16 16 YES YES 16121 862 16749 6278 5672 395 12345

DCT 1 1 NO NO 2102 2054 3635 796 782 1545 3123

LCM 10 10 YES NO 16231 6224 16742 5617 3316 3258 12461

LRU 12 12 YES NO 20001 11435 24563 5476 5987 10878 22341

PRIMEFAC 5 5 YES YES 6352 5505 7787 956 924 5152 7062

MINANDMAX-S 14 14 � NO � 5936 18395 4213 4123 4388 12724

Table 6.3: Equivalence checking results for several sequential examples using hand

constructed models

construction times also. The columns DCPEQX EqChk Time and SCPEQX EqChk Time

depicts only the equivalence checking time for both the methods. Calculation proce-

dure of SCPEQX EqChk Time is similar to the procedure used for DCPEQX EqChk Time

which has already been discussed in Chapter 5. By comparing the three columns

namely, FSMDEQX (PE) Time, DCPEQX EqChk Time and SCPEQX EqChk Time, we ob-

serve that the performance of SCPEQX module is marginally better than the DCPEQX

module and significantly better than the FSMDEQX (PE) module. In terms of total

time, SCPEQX module has shown slightly better performance than the DCPEQX module

but has been found to be worse than the FSMDEQX (PE) module in quite a few cases.

Example DCPEQX Time (µs) SCPEQX Time (µs)

PLuTo Par4All PLuTo Par4All

BCM 4659 4659 3561 3561

MINANDMAX-P 24335 24335 18341 18341

LUP 33633 31235 29845 31012

DEKKER 13428 14352 11231 10234

PATTERSON 11231 11231 7456 8423

Table 6.4: Equivalence checking results for several parallel examples using hand con-

structed models

168 Chapter 6 SCP Induced Path Based Equivalence Checking Method

##################### PATH EQUIVALENCE #######################

FOR PATH 1 ...

THE CONDITION IS -- THE TRANSFORMATION IS s := 0 + 1 * s

PATH 1 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2

FOR PATH 2 ...

THE CONDITION IS -- THE TRANSFORMATION IS i := 0

PATH 2 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2

FOR PATH 3 ...

THE CONDITION IS -- THE TRANSFORMATION IS a := 0 + 1 * a

PATH 3 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2

FOR PATH 4 ...

THE CONDITION IS -- THE TRANSFORMATION IS b := 0 + 1 * b

PATH 4 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2

FOR PATH 5 ...

THE CONDITION IS -- THE TRANSFORMATION IS n := 0 + 1 * n

PATH 5 OF MODEL 1 IS MATCHED WITH PATH 1 OF MODEL 2

FOR PATH 6 ...

THE CONDITION IS (-15 + 1 * i > 0) THE TRANSFORMATION IS s := 0 + 1 * s

PATH 6 OF MODEL 1 IS MATCHED WITH PATH 6 OF MODEL 2

. . . .

. . . .

FOR PATH 10 ...

PATH 10 OF MODEL 1 IS MATCHED WITH PATH 9 OF MODEL 2

THE CONDITION IS

(-15 + 1 * i <= 0)AND(0 - 1 * n + 1 * s >= 0)AND(0 + 1 * a - 1 * n >= 0)

THE TRANSFORMATION IS

K := 0 + 1 * a + 0 + 1 * n + 0 + 1 * n + 0 + 1 * b + 0 + 1 * s

. . . .

<<<<<<<<<<<<<<<<< THE TWO MODEL ARE EQUIVALENT >>>>>>>>>>>>>>>>>

###################### Verification Report ##############################

Exec time is 0 sec and 16324 microsecs

##

Figure 6.12: Output of SCPEQX module for the MODN example

The last two columns of Table 6.4 show the corresponding performance of the

SCPEQX module and the DCPEQX module for validating parallelizing transformations.

It is again observed that the costly path extension is not needed for the above parallel

examples and SCPEQX times are slightly smaller than the corresponding DCPEQX times

due to lesser number of paths.

6.5 Experimental Results 169

6.5.2 Experimentation using the automated model constructor

For reasons mentioned in Chapter 4, for the experimentation using the automated

model constructor we have only considered programs whose both original and trans-

formed versions are sequential in nature. The experimental set up is exactly similar to

what we have already discussed in Chapter 4.

Example Paths Extension Extension FSMDEQX Time (µs) DCPEQX Time (µs) SCPEQX

(FSMDEQX) (DCPEQX) PE VP EqChk Total Path Const Time (µs) EqChk Total

Orig Transf Orig Transf Time (µs) Time (µs)

MODN 30 30 YES YES 16001 15892 15581 37789 9451 10231 11079 30761

SUMOFDIGITS 9 9 YES YES 8000 8000 13302 25477 5231 5187 13033 23451

PERFECT 53 23 YES YES 8456 8372 9299 53674 20134 9542 7589 37274

GCD 43 43 YES NO 12567 12563 12472 41432 14231 13210 10797 38238

TLC 70 70 YES YES 16121 14230 5795 288671 184352 83456 4321 272129

DCT 1 1 NO NO 2102 1902 6717 42354 12345 12876 2902 28123

LCM 45 45 YES NO 16231 16174 12285 43245 15341 14402 9510 39235

LRU 56 56 YES NO 20001 19872 21462 855785 423142 383451 20123 826716

PRIMEFAC 35 20 YES YES 6352 6149 5568 27414 9263 9257 5636 24356

MINANDMAX-S 40 38 � NO � � 15989 40763 11534 10243 15256 37033

DIFFEQ 32 21 YES NO 42500 42389 36195 64189 11123 10524 35123 56770

DHRC 100 85 YES YES 188300 186729 185674 8772586 4493587 3912432 185321 8591340

PRAWN 610 610 YES NO 293400 291676 293876 78037279 7106251 7012412 290451 14409114

IEEE 754 210 210 YES YES 195741 186824 195330 6146482 2776134 2752124 185169 5713427

BARCODE 765 765 YES YES 125189 125189 123175 9316779 5208310 5208190 121969 10538469

QRS 56 56 YES NO 20001 19346 21462 855785 423142 383451 20123 826716

EWF 351 312 YES YES 34368 33413 36524 3344664 2034721 1151219 35149 3221089

LCM-CM 45 45 – NO � 16035 12285 43245 15341 14402 9510 39235

IEEE 754-CM 210 210 – YES � 176572 195330 6146482 2776134 2752124 185169 5713427

PERFECT-CM 53 23 – YES � 7278 9299 53674 20134 9542 7589 37274

LRU-CM 56 56 – NO � 18549 21462 855785 423142 383451 20123 826716

QRS-CM 56 56 – NO � 19234 21462 855785 423142 383451 20123 826716

Table 6.5: Equivalence checking results for several sequential examples using auto-

mated model constructor

During experimentation with automatically constructed models, we have observed

that the costly path extension is again not needed for any of the cases. From Table

6.5, we notice that the time taken by the equivalence checking phase of the SCPEQX

module is slightly better than the corresponding time taken by DCPEQX module (except

for PRIMEFAC example). However, no distinct improvement can be identified for the

SCPEQX module compared to the DCPEQX module. The Total Time for SCPEQX module

is much higher than the FSMDEQX modules. However, the total time for SCPEQX module

is slightly better than the total time for DCPEQX module.

170 Chapter 6 SCP Induced Path Based Equivalence Checking Method

6.5.3 Experimental results after introducing errors

The experimental set up for assessing the performance of the SCPEQX module for er-

roneous programs is exactly identical to that of the DCPEQX module comprising four

types of errors as mentioned in Chapter 5.

Errors Example FSMDEQX FSMDEQX DCPEQX DCPEQX SCPEQX SCPEQX

(PE) (VP) (hand const.) (automated) (hand const.) (automated)

Non-EqChk Non-EqChk Non-EqChk Non-EqChk Non-EqChk Non-EqChk

Time (µs) Time (µs) Time (µs) Time (µs) Time (µs) Time (µs)

Type 1 MODN 15456 13471 17255 34048 12835 27132

GCD 10435 10142 12523 42872 12123 35413

Type 2 TLC 14592 13780 16434 123414 11345 42174

Type 3 LRU 19278 16143 23143 733452 21872 685412

LCM 11412 10619 12834 51231 11123 45987

Type 4 MINANDMAX-P � � 24347 � 15463 �

PATTERSON � � 10913 � 6534 �

Table 6.6: Non-Equivalence checking times for faulty translations

The last five columns of Table 6.6 depict the non-equivalence detection times for

the three equivalence checkers to identify the set of non-equivalent paths in each cases.

6.6 Conclusion

This chapter deals primarily with an efficient path construction algorithm and an

equivalence checking method based on paths induced by static cut-points. It has been

formally established first that any path based approach of checking equivalence be-

tween two PRES+ models, where the paths are defined using only static cut-points, is

valid. It is also argued that the costly path extension mechanism which has been found

to be necessary in the previous chapter for dynamic cut-point induced paths to han-

dle some code motion scenarios is not needed for the static cut-point induced paths. A

specific method belonging to this class has been described in detail and illustrated. The

complexity and correctness issues have been treated comprehensively. Experiments on

some sequential programs under code motion transformations and parallelizing trans-

formations have been treated. On a comparative basis, the SCPEQX module has been

6.6 Conclusion 171

found to be somewhat better than DCPEQX method; however, both take more time than

FSMDEQX methods primarily because the path construction time for PRES+ model is

significantly higher than the corresponding time for FSMD model. Some of the limi-

tations of the present work are its inability to handle loop-shifting, software pipelining

and other loop transformations for array handling programs.

Chapter 7

Conclusion

Compilation of any software program usually involves application of some compiler

transformation techniques so that an optimized intermediate code is produced. For

validation of all such transformations, one may try to verify the optimizing compiler

which is, in general, not even partially decidable [95]. An effective alternative is to

establish the computational equivalence between the original and the transformed pro-

grams, whereby we can claim that the transformations applied for the specific instance

is correct. (Although this problem (of checking equivalence between two programs)

too is not semi-decidable [95], devising a compiler verifier in the spirit of a general

program verifier is held to be a much more difficult task [110].) Developing such

an equivalence checker for translation validation has been the main objective of the

present work.

For program analysis, it is necessary to translate any program to its equivalent for-

mal model representation. As the main target of this work is to validate code optimiz-

ing and several parallelizing transformations, a parallel model of computation (MoC)

had to be chosen. In this work, the PRES+ model, whose underlying structure is a one-

safe Petri net model where tokens occupying the places are permitted to hold values,

has been selected as the parallel MoC. PRES+ models have been constructed by hand

from both the original and the transformed programs. The present work concentrates

on devising an equivalence checker which takes as inputs two PRES+ models, N0 and

N1, say, where N0 corresponds to the source program and N1 to the transformed pro-

gram and returns either “yes” or “no” as its output. If the equivalence checker gives a

173

174 Chapter 7 Conclusion

“yes” response, then the two programs are equivalent, i.e., the transformations which

are carried out by the compiler on the source program are correct; however, if it gives

a “no” response, then the two programs are not necessarily inequivalent. Given the

fact that the equivalence checking problem is not even semi-decidable, this behaviour

of an equivalence checking algorithm is only to be expected. In other words, an equiv-

alence checking method, even as a partial decision procedure, can only be sound but

not complete and it may give false negative results. In other words, the “no” answer

is synonymous to “may be non-equivalent”.

The basic steps of the equivalence checking procedure devised in this work are

as follows: (1) In the first step, a PRES+ model is partitioned into several fragments

which are called paths; the paths are obtained by cutting a loop in at least one cut-point

so that any computation of the model becomes representable as a concatenation of

these paths [50]. (2) It is then checked whether for all paths in N0, there exists a path in

N1 such that the two paths are equivalent, i.e., their data computations and conditions

of execution are identical and their input and output places have correspondence. (3)

Finally, steps 1 and 2 are repeated with N0 and N1 interchanged. We first summarize

the contributions of this thesis. We then discuss some directions of future research.

7.1 Contributions

The major contributions of this work are as follows:

PRES+ model and its computational equivalence: Keeping in view the main

target of equivalence checking of two models, we have defined computations of any

out-port of a PRES+ model formally as a sequence of sets of transitions; each mem-

ber set in the sequence comprises transitions which can execute independent of each

other and are accordingly called parallelisable transitions. The first set in the sequence

contains transitions which have only some in-ports as their pre-places; the last set has

a single transition with the out-port in question as its post-place. Two entities are

involved in any computation, namely, the condition of its execution and the data trans-

formation it produces on the input token values to obtain an output token value. The

notion of equivalence between a computation of an out-port of N0 and that of the corre-

sponding out-port of N1 has then been defined. Finally, the computational containment

7.1 Contributions 175

and computational equivalence of N0 and N1 have been formally captured.

Dynamic cut-point induced path based equivalence checking: We have pro-

posed two equivalence checking techniques. In the first one, by suitable placement of

cut-points, the path boundaries are so ascertained that any computation can be cap-

tured as a sequence of sets of parallelisable paths; this form mimics the representation

of the computation more syntactically in the sense that each path is defined as a se-

quence of sets of parallelisable transitions where each set is a subset of some set of

transitions occurring in the computation. In a path, only the pre-places of the first

set of parallelisable transitions and the post-places of the last unit set of transition are

cut-points; the former is designated as the pre-place set of a path and the latter as its

post-place set. Dynamic cut-points are introduced, hand-in-hand with construction of

paths, using a token tracking execution. It has been formally established that for a

given set of static and dynamic cut-points, the path set obtained is unique and pro-

vides a path cover of the model in the sense that any computation can be captured

by a sequence of parallelisable paths. We refer to such paths as Dynamic cut-point

based paths or DCP paths, in short. The DCP path construction procedure has been

described in detail; its complexity analysis and correctness treatment involving termi-

nation, soundness and completeness have been carried out formally.

A path has then been characterized by a predicate depicting the condition that the

token values at its pre-places must satisfy for execution of the path and a functional

expression (data transformation of the path) over these token values depicting the

value assumed by all the post-places of the path after its execution. Two paths α of the

model N0 and β of N1 are said to be equivalent, symbolically denoted as α' β, if they

have identical condition of execution and data transformation. Assuming that there is

a correspondence relation from the set of in-ports of N0 to the set of in-ports of N1, if

two equivalent paths are found to have correspondence among their pre-places, then

their post places are made to have correspondence.

We have then formally established the validity of an equivalence checking method

based on DCP paths; more specifically it is shown that, if for each DCP path α in a

path cover of a model N0, there exists a DCP path β in N1 such that α ' β and their

pre-places have correspondence and the correspondence of the post-places of the paths

conforms to a given bijective relation among the out-ports of the models, then N0 is

indeed contained in N1, symbolically N0 v N1. Introduction of dynamic cut-points is

176 Chapter 7 Conclusion

found to shorten the paths to the extent that code motions across basic block bound-

aries fall in different path segments in the two models; this necessitated a special step

called path extensions whereby path segments are needed to be concatenated to sets of

parallel paths. The algorithmic modules of such an equivalence checking procedure,

called DCPEQX, have been described in detail; complexity analysis of the procedure

has been carried out and correctness issues such as termination and soundness have

been treated formally.

Static cut-point induced path based equivalence checking: It has next been

underlined that paths obtained from only the static cut-points which cut the loops in

the model is also able to capture computations, albeit semantically. More specifically,

in this case, a computation has been shown to be equivalent to a sequence of paths

utilizing the property that subsets of parallelisable transitions can be executed in any

arbitrary order. Validity of equivalence checking procedures which use such static cut-

point induced paths have been formally established. The algorithmic modules of an

equivalence checking procedure, referred to as SCPEQX method, has been described,

the complexity analysis carried out and correctness issues treated formally.

Both the equivalence checking procedures have been implemented in C and exper-

imentation carried out along two courses. The first course has used hand constructed

models and the second one has used models generated by an automated model con-

structor. We have satisfactorily tested on several sequential and parallel examples.

The translation is carried out by SPARK [56] HLS (high level synthesis) compiler and

two thread level parallellizing compilers PLuTo and Par4All. For checking equiva-

lence between two paths, we have used a normalizer which is reported in [20, 121].

For sequential benchmarks, we have compared both the methods with the two FSMD

equivalence checking method reported in [20, 74]. For parallel examples, FSMDEQX

modules could not be used because those modules cannot handle them.

In course of comparing the performance of FSMDEQX modules with DCPEQX and

SCPEQX modules, we have observed that the path construction overhead for FSMD

models is negligible compared to the PRES+ models because FSMD models do not

support any thread level parallelism. Hence, the module performances have been

compared in terms of both total times taken by the modules and the times taken only

during the equivalence checking phase; for PRES+ models, the equivalence checking

times have been obtained by subtracting the path construction times from the total

7.1 Contributions 177

times; for the FSMD models, the path construction times have been taken to be zero.

For the manually constructed models (for the sequential examples), comparison

has been done only with FSMDEQX (PE). The times needed by the equivalence check-

ing phases have been found to be much smaller than those needed by the FSMDEQX

(PE) module; also, in this regard, the SCPEQX module fares slightly better than the

DCPEQX module. However, in terms of total time, while SCPEQX modules shows simi-

lar improvement over the DCPEQX module, both of them have been found to be worse

than the FSMDEQX module for many examples.

For the models (of sequential examples) generated by the automated model con-

structor, however, no distinct improvement could be observed for the SCPEQX module

over the FSMDEQX modules even for the equivalence checking phase. In terms of total

time, FSMDEQX modules by far outperform the SCPEQX module. In terms of both these

times – equivalence checking times and total times – the SCPEQX module performs

slightly better than DCPEQX module.

For detecting non-equivalence between source programs and their transformed

versions with manually injected errors, again SCPEQX module performs only a bit

slower than the FSMDEQX modules for the manual models but is markedly slower for

models generated automatically; for both types of models, SCPEQX module performs

somewhat better than DCPEQX module.

For parallel examples, comparison was possible only between SCPEQX module

and DCPEQX module because FSMD models cannot capture thread level parallelism

and accordingly, FSMDEQX modules cannot handle parallel programs. A possible rea-

son for markedly inferior performance of SCPEQX (and DCPEQX) module is the sig-

nificantly larger size of automatically constructed models compared to the manually

constructed models with no optimization provided in the automatically constructed

models. Moreover, compared to various intricacies involved in path based PRES+

equivalence checking, both the prototype checkers, DCPEQX and SCPEQX, are them-

selves not optimized at all.

178 Chapter 7 Conclusion

7.2 Comparison to related work

Translation validation was introduced by Pnueli et al. in [109] and were demon-

strated by both Necula et al. [106] and Rinard et al. [118]. It is to be noted that

all the above techniques are basically bisimulation based methods. A major limita-

tion of these above methods [106, 109, 118] is that they can verify only structure

preserving transformations. If the code is moved beyond the basic block boundaries

[45, 56, 57, 72, 73, 114], those methods cannot validate. However, the above men-

tioned bisimulation approach is further enhanced by Kundu et al. [84] where they

verified the high-level synthesis tool named, SPARK. This method handles loop shift-

ing and software pipelined based transformations. The major limitation of this work

is that it cannot handle code motion across loops as well as loop swapping trans-

formations. To alleviate this shortcoming, a path based equivalence checker for the

FSMD model is proposed for sophisticated uniform and non-uniform code motions

and code motions across loops [20, 74]. They, however, presently cannot handle loop

swapping transformations as well as several thread-level parallelizing transformations

because being a sequential model of computation (MoC), FSMD models cannot cap-

ture parallel behaviours straightway; modeling concurrent behaviours using CDFGs is

significantly more complex due to all possible interleavings of the parallel operations.

The above mentioned pieces of work use variable based models as their modelling

paradigm. In this work, we have used a value based model so the data dependence is

captured more vividly. More specifically, in this work, we have focused on validation

of several structure preserving, non-structure preserving and thread level parallelizing

transformations using Petri net based models of programs with provisions for captur-

ing token values over domains depending on token types. Such models have been

presented in [37, 38] and used for propositional and temporal property verification

of programs. Accordingly, all these methods can work with finite abstractions of the

models ignoring the data values of the tokens. No work has been reported in the litera-

ture on validation of optimizing and parallelizing transformations using this modelling

paradigm; mechanisms targeted to such analyses need to deal with the token values

resulting in infinite state systems. On course to building such mechanism(s) as a first

time effort, the present work imposes certain restrictions and uses certain features as

given below (all of which may not be indispensable).

First of all, we have a place to variable association which results from the programs

7.2 Comparison to related work 179

being modelled in a natural way. This association has made the task of establishing the

path to path equivalence of the two models easier; however, such an association is not

a must; as path level equivalence is identified starting from the in-ports of the models

having a bijective correspondence, place correspondence can be made independent of

the variable correspondence. The models are assumed to be deterministic and com-

pletely specified. Lack of non-determinism has permitted us to handle only read-only

shared variables. Computations in a model use the feature that enabled transitions are

simultaneously fired which lies at the core of our path structure; in the absence of

writable shared variables among parallel threads, simultaneous firing of the enabled

transitions capture all other schedules of these transitions. Path structures use this

feature. Hence incorporating non-determinism would be a nontrivial task.

The two equivalence checking mechanisms devised in this work for the PRES+

models are path based ones. In this regard, the present work is akin to the path

based equivalence checking mechanisms of the FSMD models reported in [20, 74].

However, identification of paths in a PRES+ model has more intricacies because of

presence of thread level parallelism in the PRES+ models. Accordingly, during our

experimentation, the FSMDEQX modules have scored better than the SCPEQX module

(which, in turn, is better than the DCPEQX module) primarily due to the path construc-

tion overhead of the PRES+ models.

Another aspect is the model construction overhead; FSMD model construction is

much easier because it does not seek to capture the scope of parallelism among data in-

dependent (sequential) segments of the code through the model structure; in contrast,

PRES+ models, being value based, has the potential for capturing such parallelism

through the model structure. In fact, if a PRES+ model constructor does not ensure

this feature in the constructed models, then, in essence, this modelling paradigm loses

its worth for validating various optimizing and parallelizing transformations. The ob-

servation that the DCPEQX and the SCPEQX modules perform better than the FSMDEQX

(PE) module at the equivalence checking phase for the hand constructed models is

due to the fact that the models are lean and have parallelism captured in their struc-

tures. (That this observation does not hold for the automatically constructed models is

due to significant increase in the model size because the automated model constructor

was not adequately optimized [14].) To automatically build such models thorough

data flow analysis becomes needed as reported in [122].

180 Chapter 7 Conclusion

FSMD based equivalence checking currently does not handle loop swapping but

it is easily handled through PRES+ based equivalence checking. Code motion across

loops is not handled by FSMDEQX (PE) but is handled by FSMDEQX (VP) and also by

both DCPEQX and the SCPEQX. Parallelising transformations are currently not handled

by FSMD based equivalence methods but these are handled by PRES+ based equiv-

alence checking. All of these benefits may be attributed to the value based nature of

the PRES+ model. Accordingly, these transformations are handled during the model

construction phase of PRES+ based equivalence checking. This is an important qual-

itative difference with the FSMD based equivalence checking methods.

7.3 Scope for future work

The methods developed in this work can be enhanced to overcome their limitations.

Also, there is scope of enhancing the other developed methods in other verification

problems. In the following, we discuss both aspects of future works.

Enhancing the PRES+ equivalence checkers for handling non-determinism: While

using PRES+ models for validating code motion transformations of sequential pro-

grams so that the transformed programs still remain sequential, we do not need to

handle non-determinism. However, for parallelizing transformations, we may need

to handle shared variables and non-determinism. As such, PRES+ models essentially

provide parallel models of computation. To utilize its full potential it is needed to in-

corporate shared variables which invariably brings in non-determinism. One possible

enhancement of the present work is to incorporate non-determinism and shared vari-

ables in their entirety. This would necessitate modification of the notion right from the

model level. Specifically, conventional definition considers all the non-deterministic

choices among the bound transitions as enabled transitions [38]. Since at any step

of computation, only one of the enabled transitions is fired, it is ensured that only

one of the non-deterministic choices is exercised (disabling the other choices in its

wake). The notion of simultaneous firing of all the enabled transitions is ingrained in

the path structure of the present work. Foregoing this feature may need to rebuild the

entire edifice from the scratch. If this feature is retained, then the definition of enabled

transitions needs to be suitably modified so that non-deterministic choices appear in

a mutually exclusive manner in the set of all possible enabled transition sets resulting

7.3 Scope for future work 181

from a given set of bound transitions. Essentially, non-determinism is manifested by

the following property:

Let Tb be the set of bound transitions. Let p 2� Tb such that the number of post-

transitions of p is more than one. These post-transitions of p reflects non-determinism

if the conjunction of their guard conditions is satisfiable. Since the mechanism needs

to detect presence of such non-determinism symbolically, it has to solve the satis-

fiability problem over integers; unless the guard conditions are linear, it cannot be

achieved.

Once the non-determinism is detected the mechanism of computing all the pos-

sible sets of concurrent (enabled) transitions remains the same as the one used in

the present work with deterministic models. To what extent the various stages of

the present mechanisms would hold beyond this point itself would need independent

study; however, this would be necessary because without shared variables, the entire

gamut of parallelizing transformations would remain uncovered.

Deriving bisimulation relations from path based PRES+ equivalence checkers:

For sequential MoCs, it is possible to derive a bisimulation relation from the output of

a path based equivalence checker [83]. It is to be noted that none of the earlier meth-

ods that establish equivalence through construction of bisimulation relations has been

shown to tackle code motion across loops and several thread level parallelizing trans-

formations. Both DCPEQX and SCPEQX procedures have the capability of validating

such transformations. So, if we evolve a mechanism of deriving a bisimulation rela-

tion from the outputs of the above two path based equivalence checking procedures (in

the same line as demonstrated in [83]), then it can be shown that bisimulation relations

exist under such transformations.

Translation validation using PRES+ models for loop transformations: The two

equivalence checking procedures described in this work have been shown to success-

fully handle some loop transformations such as, loop splitting and merging for scalars

(vide Example 22). Since the PRES+ model in its present form does not provide for

representing arrays, it cannot be examined to what extent the model is suitable for

handling loop transformations which invariably involve arrays. So, one immediate

scope of the present work is to extend the model to represent arrays. McCarthy’s ac-

cess and change functions [97] can provide an effective way of representing arrays

in the model. Since the PRES+ models have the potential of capturing both control

182 Chapter 7 Conclusion

dependence and data dependence, it will be interesting to examine how this feature

influence the process of validation of such transformations using PRES+ models.

Other scheme for cut-point introduction: There should exist scope for making the

module more efficient and also exploring other alternatives followed by performance

comparison through experiments. One immediately apparent alternative is to have ad-

ditional cut-points at the branching points (i.e., places having more than one mutually

exclusive post-transitions). Such an approach would result in lesser number of shorter

paths but would necessitate more frequent path extensions. Another alternative can be

to build the entire mechanism on computations based on firing of only one of the en-

abled transitions at a time; this, however, would possibly necessitate devising newer

definitions and algorithms and accordingly merits an independent treatment.

Bisimulation based equivalence checking for PRES+ models: A bisimulation based

equivalence checking is reported in [84]. The work uses message passing for com-

munication among the parallel threads. A sophisticated transformation namely, loop

shifting, has been shown to be verifiable using this method. There is no method avail-

able in the literature for bisimulation based equivalence checking for parallel programs

which communicate through shared variables. PRES+ models may provide a uniform

modelling paradigm for both kinds of communications among the parallel threads.

Bisimulation based equivalence checking approaches resort to iterations to arrive at

the bisimulation relation. Although deriving bisimulation relation from the output of

path based equivalence checking methods has been shown to be possible, scenarios re-

sulting out of transformations such as, loop shifting, will remain beyond the scope of

such mechanisms. Accordingly, devising a bisimulation based equivalence checking

method for PRES+ models is an important future direction.

7.4 Conclusion

Many safety critical applications such as, automobiles, avionics, manufacturing pro-

cesses, nuclear reactors, etc., involve concurrent or parallel subsystems. They are

required to be dependable in their performance. Hence, there is a growing concern

to develop automated methods for formally verifying concurrent embedded systems.

A typical synthesis flow of complex systems like VLSI circuits or embedded systems

7.4 Conclusion 183

transforms the input behaviour to optimize time and physical resources using code

transformation techniques which change the control flow in the behavioural specifica-

tion significantly. Accordingly, the challenges in establishing validity of a translation

phase by demonstrating equivalence between the original behaviour and the trans-

formed behaviour increases manifold. This thesis has addressed verification of certain

behavioural transformations during the code optimization phase of a compiler. We be-

lieve integrating these methods with compilers will make the synthesis process more

rigorous.

Appendix A

Appendix

A.1 List of examples

int main(void) {

int s=0,i=0,n,a,b,sout,sT0_6,sT1_8,sT2_8,sT3_10,sT4_14,sT5_12,sT6_15;

do {

sT0_6 = (i <= 15);/* Statement is trimmed */

if (sT0_6) {/* In trimmed version if (i<=15) */

i=(i + 1);sT1_8=(b % 2);sT5_12=(a * 2);sT2_8=(sT1_8== 1);

sT4_14 =(sT5_12 >= n);b=(b / 2);

if (sT2_8) { s = (s + a);sT6_15 = (sT5_12 - n);a = sT5_12;

} else {sT6_15 = (sT5_12 - n);a = sT5_12;

}/* Replace by a = a*2 */

sT3_10 = (s >= n);/* Trimmed out this statement */

if (sT3_10) {s = (s - n);

}/* end of if-else (sT3_10) */

if (sT4_14) {a = sT6_15;

}/* end of if-else (sT4_14) */

} /* end of loop condition */

else

break;

} while (1);

sout = s;return 0;

}

Figure A.1: SPARK output of MODN

185

186 Chapter A Appendix

main() {
int y1, y2, res, yout, i, res = 1;
for (i = 0; y1 != y2; i++) {

if (y1 % 2 == 0)
if (y2 % 2 == 0) {

res = res * 2;
y1 = y1 / 2;
y2 = y2 / 2;

} else
y1 = y1 / 2;

else if (y2 % 2 == 0)
y2 = y2 / 2;

else if (y1 > y2)
y1 = y1 - y2;

else
y2 = y2 - y1;

}
res = res * y1;
yout = res;

}
(a)

int main(void){
int y1; int y2;int res; int yout;
int i;int sT0_6;int sT1_8; int sT2_8;
int sT3_9; int sT4_9;int sT5_17;int sT6_17;
int sT7_19;int returnVar_main;
res = 1;i = 0;
do {

sT0_6 = (y1 != y2);
if (sT0_6) {

i = (i + 1);
sT1_8 = (y1 % 2);
sT2_8 = (sT1_8 == 0);

}
if (sT2_8) {

sT3_9 = (y2 % 2);
sT4_9 = (sT3_9 == 0);
if (sT4_9) {

res = (res * 2);
y1 = (y1 / 2);y2 = (y2 / 2);

}
else {

y1 = (y1 / 2);
}

}
else {

sT5_17 = (y2 % 2);
sT6_17 = (sT5_17 == 0);
if (sT6_17) {

y2 = (y2 / 2);
}
else {

sT7_19 = (y1 > y2);
if (sT7_19) {

y1 = (y1 - y2);
}
else {

y2 = (y2 - y1);
}

}
}

}
else
break;

} while (1);
res = (res * y1);yout = res;

}
(b)

Figure A.2: Original and transformed program of GCD

A.1 List of examples 187

void main ()
{
int a0;int i0;int i7;
int a7;int b1;int i1;
int i2;int a2;int a3;
int i3;int i4;int a4;
int b5;int i5;int i6;
int a6;int b0;int c4;
int d2;int b6;int d3;
int c7;int c5;int d0;
int d1;int c6;int d5;
int d7;int tmp0,tmp1;
int d4;int d6;int o4;
int o0;int tmp2;int o2;
int o6;int o1;int o7;
int o3; int o5;
q00:a0=i0+i7;a7=i0-i7;b1=i1+i2;

a2=i1-i2;a3=i3+i4;a4=i3-i4;
b5=i5+i6;a6=i5-i6;
goto q02;

q02:b0=a0+a4;c4=a0-a4;d2=a2+a6;
b6=a2-a6;d3=a3+a7;c7=a3-a7;
c5=b5*678;goto q03;

q03:d0=b0+b1;d1=b0-b1;c6=b6*678;
d5=c5+c7;d7=c5-c7;tmp0=d2*4;
tmp1=d3*4;tmp0=d2*5;
tmp1=d3*5;goto q04;

q04:d4=c4+c6;d6=c4-c6;o4=d0*678;
o0=d1*678;tmp2=tmp0+tmp1;
tmp1=d5*4;tmp1=d5*5;tmp1=d7*4;
tmp1=d7*5;goto q05;

q05:o2=tmp2;o6=tmp2;tmp0=d4*5;
tmp0=d4*4;tmp0=d6*5;
tmp0=d6*4;goto q06;

q06:tmp2=tmp0+tmp1;tmp2=tmp0-tmp1;
tmp2=tmp0+tmp1;
tmp2=tmp0-tmp1;goto q07;

q07:o1=tmp2;o7=tmp2;o3=tmp2;o5=tmp2;
goto q09;

q09:;
}

(a)

void main ()
{
int a0;int i0; int i7; int a7;
int b1;int i1; int i2; int a2;
int a3;int i3; int i4; int a4;
int b5;int i5; int i6; int a6;
int b0;int c4; int d2; int b6;
int d3;int c7; int c5; int d0;
int d1;int c6; int d5; int d7;
int tmp0;int tmp1;int d4;int d6;
int o4;int o0; int tmp2;int o2;
int o6;int o1; int o7; int o3;
int o5;
q00:a0=i0+i7;a7=i0-i7;

b1=i1+i2;a2=i1-i2;
a3=i3+i4;a4=i3-i4;
b5=i5+i6;a6=i5-i6;
goto q02;

q02:b0=a0+a4;c4=a0-a4;
d2=a2+a6;b6=a2-a6;
d3=a3+a7;c7=a3-a7;
c5=b5*678;goto q03;

q03:d0=b0+b1;d1=b0-b1;
c6=b6*678;d5=c5+c7;
d7=c5-c7;tmp0=d2*4;
tmp1=d3*4;tmp0=d2*5;
tmp1=d3*5;goto q04;

q04:d4=c4+c6;d6=c4-c6;
o4=d0*678;o0=d1*678;
tmp2=tmp0+tmp1;tmp1=d5*4;
tmp1=d5*5;tmp1=d7*4;
tmp1=d7*5;goto q06;

q06:o1=tmp2;o7=tmp2;o3=tmp2;
o5=tmp2;goto q07;

q07:;

}
(b)

Figure A.3: Original and transformed program of DCT

188 Chapter A Appendix

main(){
int current_state,
newHL,newFL,cars,
timeOutL,timeOutS,
newST,FarmL,state,
HiWay,StartTimer,newstate,;
if (current_state == 0) {
newHL = 4;newFL = 6;
if (cars == 1 && timeOutL == 1) {

newstate = 4;newST = 1;
} else {

newstate = 0;newST = 0;
}

}
if (current_state == 4) {
newHL = 2;newFL = 6;
if (timeOutS == 1) {

newstate = 2;newST = 1;
} else {

newstate = 6;newST = 0;
}

}
if (current_state == 2) {
newHL = 6;newFL = 4;
if (cars == 0 || timeOutL == 1) {

newstate = 6;newST = 1;
} else {

newstate = 2;newST = 0;
}

}
if (current_state == 6) {

newHL = 6;newFL = 2;
if (timeOutS = 1) {

newstate = 0;newST = 1;
} else {

newstate = 6;newST = 0;
}

}
if (current_state == 7) {

newHL = 0;newFL = 0;
newstate = 0;newST = 0;

}
state = newstate;HiWay = newHL;
FarmL = newST;StartTimer = newST;

}
(a)

int main(void){
int current_state;int newstate, newHL,
cars; timeOutL, timeOutS,newFL,
newST, FarmL, state, HiWay,StartTimer,
sT0_6,sT1_10,sT2_10,sT3_10,sT4_21,sT13_40;
sT5_25,sT6_36,sT7_40,sT8_40,sT9_40,sT10_51
sT11_55,sT12_66,sT14_40,
sT0_6=(current_state == 0);
sT6_36 = (current_state == 2);
if (sT0_6) {sT1_10 = (timeOutL == 1);

sT2_10 = (cars == 1);newHL = 4;
newFL=6;ST3_10=((sT2_10) && (sT1_10));

if (sT3_10){newstate = 4;newST = 1;
sT10_51 = (current_state == 6);
sT4_21 = (current_state == 4);}

else{newstate = 0;newST = 0;
sT10_51 = (current_state == 6);
sT4_21 = (current_state == 4);
}

}
else{sT10_51 = (current_state == 6);

sT4_21 = (current_state == 4);}
if (sT4_21){sT5_25 = (timeOutS == 1);

newHL = 2;newFL = 6;
if (sT5_25){newstate = 2;newST = 1;

sT13_40 = (timeOutL == 1);
sT14_40 = (cars == 0);

}
else{newstate = 6;newST = 0;

sT13_40 = (timeOutL == 1);
sT14_40 = (cars == 0);

}
}
else{sT12_66 = (current_state == 7);
}
if (sT10_51){newHL= 6;newFL= 2;

timeOutS= 1;sT11_55= 1;
if (1){newstate = 0;newST = 1;
}
else{newstate = 6;newST = 0;
}

}
if (sT12_66){newHL = 0;newFL= ewstate = 0;

state =HiWay=FarmL=StartTimer = 0;
}
else{state = newstate;HiWay = newHL;

FarmL = newST;StartTimer = newST;
}

}
(b)

Figure A.4: Original and transformed program of TLC

A.1 List of examples 189

int n, sum;
if(n > 9){
sum = 0;
Loop:

if(n > 0){
sum += n%10; n = n/10;
goto Loop;

}
else if(sum > 9){

n = sum;sum = 0;
goto Loop;

}
else{

n = sum;
}

}
(a)

int n, sum;
while(n > 9){

sum = 0;
while(n > 0){

sum += n%10;n = n/10;
}

n = sum;
}

(b)

Figure A.5: Original and transformed program of SUMOFDIGITS

int sum = 1, i = 2, n, out;
while(i < n){

if(n % i == 0)
sum = sum + i;
i = i + 1;

}
if(sum == n){

out = 1;
}
else {

out = 0;
}

(a)

int sum = 1, i = 2, n, out;
if(i < n){

Loop:
if(n % i == 0 && i+1 < n){

sum = sum + i;i = i + 1;goto Loop;
}
if(n % i != 0 && i+1 < n){
i = i + 1;goto Loop;

}
if(n % i == 0 && i+1 >= n){
sum = sum + i;i = i + 1;

}
if(n % i != 0 && i+1 >= n){
i = i + 1;

}
}
if(sum == n){

out = 1;
}
else {

out = 0;
}

(b)

Figure A.6: Original and transformed program of PERFECT

190 Chapter A Appendix

main() {
int y1, y2, res, yout,

yout1, i, res = 1;
for (i = 0; y1 != y2; i++) {

if (y1 % 2 == 0)
if (y2 % 2 == 0) {

res = res * 2;
y1 = y1 / 2;
y2 = y2 / 2;

} else
y1 = y1 / 2;

else if (y2 % 2 == 0)
y2 = y2 / 2;

else if (y1 > y2)
y1 = y1 - y2;

else
y2 = y2 - y1;

}
res = res * y1;
yout = res;
yout1=(y1*y2)/yout;

}
(a)

int main(void)
{
int y1; int y2,res,yout,yout1;
int i;int sT0_6,sT1_8,sT2_8;
int sT3_9,sT4_9,sT5_17,sT6_17;
int sT7_19, returnVar_main;
res = 1;i = 0;
do {

sT0_6 = (y1 != y2);
if (sT0_6) {

i = (i + 1);
sT1_8 = (y1 % 2);
sT2_8 = (sT1_8 == 0);

}
if (sT2_8) {

sT3_9 = (y2 % 2);
sT4_9 = (sT3_9 == 0);
if (sT4_9) {

res = (res * 2);
y1 = (y1 / 2);y2 = (y2 / 2);

} else {
y1 = (y1 / 2);

}
} /* sT2_8 */
else {

sT5_17 = (y2 % 2);
sT6_17 = (sT5_17 == 0);
if (sT6_17) {

y2 = (y2 / 2);
} else {

sT7_19 = (y1 > y2);
if (sT7_19) {

y1 = (y1 - y2);
} else {
y2 = (y2 - y1);

}
}

}
}
else
break;
} while (1);
res = (res * y1);
yout = res;
yout1=(y1*y2)/yout;

}
(b)

Figure A.7: Original and transformed program of LCM

A.1 List of examples 191

void main ()

{

int eop;int breakLoop;int clk;int X; int Y;int reset;

int found;int newGuy;int mru;int i;int last;int temp;

int j;int temp2;int temp_list; int list;int pushTo;int temp1;

int temp3;int temp4;int lru;

q000: eop=0; breakLoop=0;goto q001;

q001: if (clk!=1){goto q001;}

else {goto q002;}

q002: if (eop==0){X=100;Y=200;goto q003;}

else {goto q033;}

q003: if (clk!=1) {goto q003;}

else {goto q004;}

q004: if (reset==1){eop=1;breakLoop=1;goto q005;}

else {eop=0;breakLoop=0;goto q005; }

q005: if (eop==0){found=0;newGuy=mru;i=0;goto q006;}

else {goto q002;}

q006: if (i<last&&found==0&&breakLoop==0){temp=0;j=0;goto q007;}

else {goto q014;}

q007: if (j<=i) {temp=temp*256;j=j+1;goto q007;}

else {temp2=temp+8;goto q009;}

q009: temp_list=list%temp2;goto q010;

q010: temp_list=temp_list/temp;goto q011;

q011: if (temp_list==newGuy) {found=1;goto q012;}

else{i=i+1;goto q012;}

q012: if (clk!=1){goto q012;}

else {eop=0;breakLoop=0;goto q013;}

q013: if (reset==1){eop=1;breakLoop=1;goto q006;}

else{goto q006;}

q014: if (eop==0){eop=0;goto q015;}

else {goto q002;}

q015: if (found==1){pushTo=i;goto q018;}

else {goto q016;}

q016: if (last<7){pushTo=last+1;goto q017;}

else{pushTo=last;goto q017;}

q017:last=pushTo;goto q018;

q018: if (clk!=1){goto q018;}

else {goto q019;}

q019:if (reset==1){eop=1;goto q020;}

else {goto q020;}

q020: if (eop==0) {temp=0;j=0;eop=0;goto q021;}

else {goto q002;}

q021: if (j<=pushTo){temp=temp*256;j=j+1;goto q021;}

else {temp_list=list%temp;goto q022;}

q022: temp_list=temp_list*256;temp1=temp*256;goto q023;

q023: list=list/temp1;goto q024;

q024: list=list*temp1;goto q025;

q025: list=list+temp_list;goto q026;

q026: if (reset==1){eop=1;goto q027;}

else{goto q027;}

q027: if (eop==0){list=list/256;goto q028;}

else{goto q002;}

q028: list=list*256;temp3=last+1;goto q029;

q029: list=list+newGuy;temp3=temp3*256;temp4=last*256;goto q030;

q030: temp_list=list%temp3;goto q031;

q031: temp_list=temp_list/temp4;goto q032;

q032: lru=temp_list; goto q002;

q033: ;

}

void main ()

{

int eop;int breakLoop;int clk;int reset;

int X;int Y;int found;int newGuy;int mru;

int i;int last;int temp;int j;int temp2;

int temp_list;int list;int pushTo;int temp1;

int temp3;int temp4;int lru;

q000: eop=0;breakLoop=0;goto q001;

q001:if (clk!=1){goto q001;}

else{goto q002;}

q002:if (eop==0){goto q003;}

else {goto q033;}

q003:if (clk!=1){goto q003;}

else if (! (clk!=1) &&reset==1)

{eop=1;breakLoop=1;X=100;Y=200;goto q005;}

else {eop=0;breakLoop=0;X=100;Y=200;goto q005;}

q005:if (eop==0){found=0;newGuy=mru;i=0;goto q006;}

else{goto q002;}

q006:if (i<last&&found==0&&breakLoop==0){temp=0;j=0;goto q007;}

else{goto q014;}

q007:if (j<=i){temp=temp*256;j=j+1;goto q007;}

else{temp2=temp+8;goto q009;}

q009:temp_list=list%temp2;goto q010;

q010:temp_list=temp_list/temp;goto q011;

q011:if (temp_list==newGuy){found=1;goto q012;}

else{i=i+1;goto q012;}

q012:if (clk!=1){goto q012;}

else{eop=0;breakLoop=0;goto q013;}

q013:if (reset==1){eop=1;breakLoop=1;goto q006;}

else{goto q006;}

q014:if (eop==0){eop=0;goto q015;}

else{goto q002;}

q015:if (found==1){pushTo=i;goto q018;}

else{goto q016;}

q016:if (last<7){pushTo=last+1;goto q017;}

else{pushTo=last;goto q017;}

q017:last=pushTo;goto q018;

q018:if (clk!=1){goto q018;}

else{goto q019;}

q019:if (reset==1){eop=1;goto q020;}

else{goto q020;}

q020:if (eop==0){temp=0;j=0;eop=0;goto q021;}

else{goto q002;}

q021:if (j<=pushTo){temp=temp*256;j=j+1;goto q021;}

else{temp_list=list%temp;goto q022;}

q022:temp_list=temp_list*256; temp1=temp*256; goto q023;

q023:list=list/temp1;goto q024;

q024:list=list*temp1;goto q025;

q025:list=list+temp_list;goto q026;

q026:if (reset==1){eop=1;goto q027;}

else{goto q027;}

q027:if (eop==0){list=list/256;goto q028;}

else{goto q002;}

q028:list=list*256;temp3=last+1;goto q029;

q029:list=list+newGuy;temp3=temp3*256;temp4=last*256;goto q030;

q030:temp_list=list%temp3;goto q031;

q031:temp_list=temp_list/temp4;goto q032;

q032:lru=temp_list;goto q002;

q033:;

}

Figure A.8: Source and transformed program of LRU

192 Chapter A Appendix

int k,m,x,xout;
while(x > 1)
{

for(k = 2; k <= x; k++){
m = x % k;
if(m == 0){

output (k);
x = x / k; break;

}
}

}
(a)

int k,m;
while(x > 1){
for(k = 2; k <= x; k++){

m = x % k;
if(m == 0 && x/k > 1){
output(k);
x = x / k;
break;

}
if(m == 0 && !(x/k > 1)){
output(k);
x = x / k;
goto breakLoop;

}
}

}
breakLoop:;

(b)

Figure A.9: Original and transformed program of PRIMEFAC

A.2 List of erroneous program 193

A.2 List of erroneous program

Type 2 error

int main(void)
{
int current_state;int newstate;int newHL;int newFL;
int cars;int timeOutL;int timeOutS;
int newST;int FarmL;int state;int HiWay;
int StartTimer;int sT0_6;int sT1_10;
int sT2_10;int sT3_10;int sT4_21;sT13_40;
int sT5_25;int sT6_36;int sT7_40;
int sT8_40;int sT9_40;int sT10_51; int sT11_55;
int sT12_66; int sT14_40;
sT0_6 = (current_state == 0); sT6_36 = (current_state == 2);
if (sT0_6)
{
sT1_10 = (timeOutL == 1);sT2_10 = (cars == 1);newHL = 4;
newFL = 6;ST3_10 = ((sT2_10) && (sT1_10));
if (sT3_10)
{newstate = 4;newST = 1;
sT10_51 = (current_state == 6);
sT4_21 = (current_state == 4);

}
else
{newstate = 0;newST = 0;
sT10_51 = (current_state == 6);sT4_21 = (current_state == 4);

}
}

else
{sT10_51 = (current_state == 6);sT4_21 = (current_state == 4);
}

if (sT4_21)
{sT5_25 = (timeOutS == 1);newHL = 2;newFL = 6;
if (sT5_25)
{newstate = 2;newST = 1;sT13_40 = (timeOutL == 1);
sT14_40 = (cars == 0);

}
else{newstate = 6;newST = 0;sT13_40 = (timeOutL == 1);

sT14_40 = (cars == 0);}
}

else
{sT12_66 = (current_state == 7);}

if (sT10_51)
{newHL= 6;newFL= 2;timeOutS= 1;sT11_55= 1;
if (1){newstate = 0;newST = 1;}
else{newstate = 6;newST = 0;}

}
if (sT12_66)
{newHL = 0;
newFL = 0;
newstate= 0;
newST = 0;
state = 0;
HiWay = 0;
FarmL = 0;
StartTimer = 0;

}
else
{state = newstate;
HiWay = newHL;
FarmL = newST;
StartTimer = newST;}

}
(a)

int main(void)
{
int current_state;int newstate;int newHL;int newFL;
int cars;int timeOutL;int timeOutS;
int newST;int FarmL;int state;int HiWay;
int StartTimer;int sT0_6;int sT1_10;
int sT2_10;int sT3_10;int sT4_21;sT13_40;
int sT5_25;int sT6_36;int sT7_40;
int sT8_40;int sT9_40;int sT10_51; int sT11_55;
int sT12_66; int sT14_40;
sT0_6 = (current_state == 0); sT6_36 = (current_state == 2);
if (sT0_6)
{
sT1_10 = (timeOutL == 1);sT2_10 = (cars == 1);newHL = 4;
newFL = 6;ST3_10 = ((sT2_10) && (sT1_10));
newST = 0;/* move from else block */
if (sT3_10)
{newstate = 4;newST = 1;
sT10_51 = (current_state == 6);
sT4_21 = (current_state == 4);

}
else
{newstate = 0;
sT10_51 = (current_state == 6);sT4_21 = (current_state == 4);

}
}
else
{sT10_51 = (current_state == 6);sT4_21 = (current_state == 4);
}
if (sT4_21)
{sT5_25 = (timeOutS == 1);newHL = 2;newFL = 6;
if (sT5_25)
{newstate = 2;newST = 1;sT13_40 = (timeOutL == 1);
sT14_40 = (cars == 0);

}
else{newstate = 6;newST = 0;sT13_40 = (timeOutL == 1);

sT14_40 = (cars == 0);}
}
else
{sT12_66 = (current_state == 7);}
if (sT10_51)
{newHL= 6;newFL= 2;timeOutS= 1;sT11_55= 1;
if (1){newstate = 0;newST = 1;}
else{newstate = 6;newST = 0;}

}
if (sT12_66)
{newHL = 0;
newFL = 0;
newstate = 0;
newST = 0;
state = 0;
HiWay = 0;
FarmL = 0;
StartTimer = 0;

}
else
{state = newstate;
HiWay = newHL;
FarmL = newST;
StartTimer = newST;}

}
(b)

Figure A.10: Correct and erroneous program of TLC

194 Chapter A Appendix

Type 3 error

void main ()

{

int eop;int breakLoop;int clk;int reset;

int X;int Y;int found;int newGuy;int mru;

int i;int last;int temp;int j;int temp2;

int temp_list;int list;int pushTo;int temp1;

int temp3;int temp4;int lru;

q000: eop=0;breakLoop=0;goto q001;

q001:if (clk!=1){goto q001;}

else{goto q002;}

q002:if (eop==0){goto q003;}

else {goto q033;}

q003:if (clk!=1){goto q003;}

else if (! (clk!=1) &&reset==1)

{eop=1;breakLoop=1;X=100;Y=200;goto q005;}

else {eop=0;breakLoop=0;X=100;Y=200;goto q005;}

q005:if (eop==0){found=0;newGuy=mru;i=0;goto q006;}

else{goto q002;}

q006:if (i<last&&found==0&&breakLoop==0){temp=0;j=0;goto q007;}

else{goto q014;}

q007:if (j<=i){temp=temp*256;j=j+1;goto q007;}

else{temp2=temp+8;goto q009;}

q009:temp_list=list%temp2;goto q010;

q010:temp_list=temp_list/temp;goto q011;

q011:if (temp_list==newGuy){found=1;goto q012;}

else{i=i+1;goto q012;}

q012:if (clk!=1){goto q012;}

else{eop=0;breakLoop=0;goto q013;}

q013:if (reset==1){eop=1;breakLoop=1;goto q006;}

else{goto q006;}

q014:if (eop==0){eop=0;goto q015;}

else{goto q002;}

q015:if (found==1){pushTo=i;goto q018;}

else{goto q016;}

q016:if (last<7){pushTo=last+1;goto q017;}

else{pushTo=last;goto q017;}

q017:last=pushTo;goto q018;

q018:if (clk!=1){goto q018;}

else{goto q019;}

q019:if (reset==1){eop=1;goto q020;}

else{goto q020;}

q020:if (eop==0){temp=0;j=0;eop=0;goto q021;}

else{goto q002;}

q021:if (j<=pushTo){temp=temp*256;j=j+1;goto q021;}

else{temp_list=list%temp;goto q022;}

q022:temp_list=temp_list*256; temp1=temp*256; goto q023;

q023:list=list/temp1;goto q024;

q024:list=list*temp1;goto q025;

q025:list=list+temp_list;goto q026;

q026:if (reset==1){eop=1;goto q027;}

else{goto q027;}

q027:if (eop==0){list=list/256;goto q028;}

else{goto q002;}

q028:list=list*256;temp3=last+1;goto q029;

q029:list=list+newGuy;temp3=temp3*256;temp4=last*256;goto q030;

q030:temp_list=list%temp3;goto q031;

q031:temp_list=temp_list/temp4;goto q032;

q032:lru=temp_list;goto q002;

q033:;

}

void main ()

{

int eop;int breakLoop;int clk;int reset;

int X;int Y;int found;int newGuy;int mru;

int i;int last;int temp;int j;int temp2;

int temp_list;int list;int pushTo;int temp1;

int temp3;int temp4;int lru;

q000: eop=0;breakLoop=0;goto q001;

q001:if (clk!=1){eop=0; goto q001;}

/* eop=0 moves from q020 */

else{goto q002;}

q002:if (eop==0){goto q003;}

else {goto q033;}

q003:if (clk!=1){goto q003;}

else if (! (clk!=1) &&reset==1)

{eop=1;breakLoop=1;X=100;Y=200;goto q005;}

else {eop=0;breakLoop=0;X=100;Y=200;goto q005;}

q005:if (eop==0){found=0;newGuy=mru;i=0;goto q006;}

else{goto q002;}

q006:if (i<last&&found==0&&breakLoop==0){temp=0;j=0;goto q007;}

else{goto q014;}

q007:if (j<=i){temp=temp*256;j=j+1;goto q007;}

else{temp2=temp+8;goto q009;}

q009:temp_list=list%temp2;goto q010;

q010:temp_list=temp_list/temp;goto q011;

q011:if (temp_list==newGuy){found=1;goto q012;}

else{i=i+1;goto q012;}

q012:if (clk!=1){goto q012;}

else{eop=0;breakLoop=0;goto q013;}

q013:if (reset==1){eop=1;breakLoop=1;goto q006;}

else{goto q006;}

q014:if (eop==0){eop=0;goto q015;}

else{goto q002;}

q015:if (found==1){pushTo=i;goto q018;}

else{goto q016;}

q016:if (last<7){pushTo=last+1;goto q017;}

else{pushTo=last;goto q017;}

q017:last=pushTo;goto q018;

q018:if (clk!=1){goto q018;}

else{goto q019;}

q019:if (reset==1){eop=1;goto q020;}

else{goto q020;}

q020:if (eop==0){temp=0;j=0;goto q021;}

else{goto q002;}

q021:if (j<=pushTo){temp=temp*256;j=j+1;goto q021;}

else{temp_list=list%temp;goto q022;}

q022:temp_list=temp_list*256; temp1=temp*256; goto q023;

q023:list=list/temp1;goto q024;

q024:list=list*temp1;goto q025;

q025:list=list+temp_list;goto q026;

q026:if (reset==1){eop=1;goto q027;}

else{goto q027;}

q027:if (eop==0){list=list/256;goto q028;}

else{goto q002;}

q028:list=list*256;temp3=last+1;goto q029;

q029:list=list+newGuy;temp3=temp3*256;temp4=last*256;goto q030;

q030:temp_list=list%temp3;goto q031;

q031:temp_list=temp_list/temp4;goto q032;

q032:lru=temp_list;goto q002;

q033:;

}

Figure A.11: Correct and erroneous program of LRU

A.3 List of PRES+ models 195

Type 4 error

int main()

{

int num, max, min, i, j, out;

printf ("Enter seven numbers: ");

scanf ("%d", &num);

max = min = num;

#pragma scop

for (i = 0; i < 3; i++)

{scanf ("%d", &num);

if (max < num)max = num;

}

for (j = 0; j < 3; j++)

{scanf ("%d", &num);

if (min > num)min = num;

}

#pragma endscop

out = min+max;

printf ("%d ", out);

return 0;

}

(a)

int main()

{ int num, max, min, i,j, out;

printf ("Enter seven numbers: ");

scanf ("%d", &num);

max = min = num;

CLooG code

for (i = 0; i < 3; i++)

{scanf ("%d", &num);

if (max < num)max = num;

}

\PAR

for (j = 0; i < 3; j++)

{

if (min > num)min = num;

}

CLooG code

out = min+max;

printf ("%d ", out);

return 0;

}

(b)

Figure A.12: Correct and erroneous program of MINMAX

A.3 List of PRES+ models

196 Chapter A Appendix

Figure
A

.13:PR
E

S+
m

odelforM
O

D
N

originalusing
autom

ated
m

odelconstructor(to
be

view
ed

w
ith

adequate
m

agnification
in

PD
F

view
er)

A.3 List of PRES+ models 197

Fi
gu

re
A

.1
4:

PR
E

S+
m

od
el

fo
r

M
O

D
N

tr
an

sf
or

m
ed

us
in

g
au

to
m

at
ed

m
od

el
co

ns
tr

uc
to

r
(t

o
be

vi
ew

ed
w

ith
ad

eq
ua

te
m

ag
ni

fic
at

io
n

in
PD

F

vi
ew

er
)

198 Chapter A Appendix

Figure A.15: PRES+ model for sum of the digits (SOD) original

A.3 List of PRES+ models 199

Figure A.16: PRES+ model for sum of the digits (SOD) transformed

200 Chapter A Appendix

Figure
A

.17:PR
E

S+
m

odelforG
C

D
original(to

be
view

ed
w

ith
adequate

m
agnification

in
PD

F
view

er)

A.3 List of PRES+ models 201

Fi
gu

re
A

.1
8:

PR
E

S+
m

od
el

fo
rG

C
D

tr
an

sf
or

m
ed

(t
o

be
vi

ew
ed

w
ith

ad
eq

ua
te

m
ag

ni
fic

at
io

n
in

PD
F

vi
ew

er
)

202 Chapter A Appendix

Figure A.19: PRES+ model for DCT original

A.3 List of PRES+ models 203

Figure A.20: PRES+ model for DCT transformed

204 Chapter A Appendix

Figure
A

.21:PR
E

S+
m

odelforT
L

C
original(to

be
view

ed
w

ith
adequate

m
agnification

in
PD

F
view

er)

A.3 List of PRES+ models 205

Fi
gu

re
A

.2
2:

PR
E

S+
m

od
el

fo
rT

L
C

tr
an

sf
or

m
ed

(t
o

be
vi

ew
ed

w
ith

ad
eq

ua
te

m
ag

ni
fic

at
io

n
in

PD
F

vi
ew

er
)

206 Chapter A Appendix

Figure A.23: PRES+ model for PERFECT original (to be viewed with adequate mag-

nification in PDF viewer)

A.3 List of PRES+ models 207

Fi
gu

re
A

.2
4:

PR
E

S+
m

od
el

fo
rP

E
R

FE
C

T
tr

an
sf

or
m

ed

208 Chapter A Appendix

Figure
A

.25:PR
E

S+
m

odelforPR
IM

E
FA

C
original

A.3 List of PRES+ models 209

Fi
gu

re
A

.2
6:

PR
E

S+
m

od
el

fo
rP

R
IM

E
FA

C
tr

an
sf

or
m

ed
(t

o
be

vi
ew

ed
w

ith
ad

eq
ua

te
m

ag
ni

fic
at

io
n

in
PD

F
vi

ew
er

)

210 Chapter A Appendix

Figure
A

.27:PR
E

S+
m

odelforL
C

M
original(to

be
view

ed
w

ith
adequate

m
agnification

in
PD

F
view

er)

A.3 List of PRES+ models 211

Fi
gu

re
A

.2
8:

PR
E

S+
m

od
el

fo
rL

C
M

tr
an

sf
or

m
ed

(t
o

be
vi

ew
ed

w
ith

ad
eq

ua
te

m
ag

ni
fic

at
io

n
in

PD
F

vi
ew

er
)

212 Chapter A Appendix

Figure
A

.29:PR
E

S+
m

odelforL
R

U
original(to

be
view

ed
w

ith
adequate

m
agnification

in
PD

F
view

er)

A.3 List of PRES+ models 213

Fi
gu

re
A

.3
0:

PR
E

S+
m

od
el

fo
rL

R
U

tr
an

sf
or

m
ed

(t
o

be
vi

ew
ed

w
ith

ad
eq

ua
te

m
ag

ni
fic

at
io

n
in

PD
F

vi
ew

er
)

Bibliography

[1] LLVM Compiler. http://llvm.org/.

[2] Par4All. http://www.par4all.org/.

[3] PVS Specification and Verification System. http://pvs.csl.sri.com/.

[4] UPPAAL tool. http:/www.uppaal.org/.

[5] Z3 SMT Solver. http:/www.z3.codeplex.com/.

[6] A. Aiken and A. Nicolau. A development environment for horizontal mi-

crocode. IEEE Trans. Softw. Eng., 14(5):584–594, 1988.

[7] S. G. Akl. Parallel Computation: Models and Methods. Prentice-Hall, Inc.,

1997.

[8] S. G. Akl. Editorial note. Parallel Processing Letters, 25(1), 2015.

[9] F. Arendt and B. Kluhe. Modelling and verification of real-time software using

interpreted petri nets. Annual Review in Automatic Programming, 15:35 – 40,

1990.

[10] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-

performance computing. ACM Comput. Surv., 26:345–420, December 1994.

[11] C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and

simulation. In Computer Aided Verification, pages 50–61, 1996.

[12] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity

and similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231,

2000.
215

http://llvm.org/
http://www.par4all.org/
http://pvs.csl.sri.com/
http:/www.uppaal.org/
http:/www.z3.codeplex.com/

216 BIBLIOGRAPHY

[13] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[14] S. Bandyopadhyay. Supporting code and examples for thesis.

https://cse.iitkgp.ac.in/~chitta/pubs/rep/thesisBench.zip, https://github.com/

soumyadipcsis/Equivalence-checker/blob/master/thesisBench.zip, Aug 2016.

[15] S. Bandyopadhyay, K. Banerjee, D. Sarkar, and C. Mandal. Translation valida-

tion for pres+ models of parallel behaviours via an fsmd equivalence checker.

In Progress in VLSI Design and Test (VDAT), volume 7373, pages 69–78.

Springer, 2012.

[16] S. Bandyopadhyay, D. Sarkar, K. Banerjee, and C. Mandal. A path-based equiv-

alence checking method for petri net based models of programs. In ICSOFT-EA

2015 - Proceedings of the 10th International Conference on Software Engi-

neering and Applications, Colmar, Alsace, France, 20-22 July, 2015., pages

319–329, 2015.

[17] S. Bandyopadhyay, D. Sarkar, K. Banerjee, C. Mandal, and K. R. Duddu. A

path construction algorithm for translation validation using pres+ models. Par-

allel processing letter (to appear), 2015.

[18] S. Bandyopadhyay, D. Sarkar, and C. Mandal. An efficient equivalence check-

ing method for petri net based models of programs. In 37th IEEE/ACM Inter-

national Conference on Software Engineering, ICSE 2015 (Poster), Florence,

Italy, May 16-24, 2015, Volume 2, pages 827–828, 2015.

[19] S. Bandyopadhyay, D. Sarkar, and C. Mandal. An efficient path based equiva-

lence checking for petri net based models of programs. In Proceedings of the

9th India Software Engineering Conference, Goa, India, February 18-20, 2016,

pages 70–79, 2016.

[20] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. Verification of code motion

techniques using value propagation. IEEE TCAD, 33(8), 2014.

[21] G. Barany and A. Krall. Optimal and heuristic global code motion for minimal

spilling. In Compiler Construction, pages 21–40, 2013.

[22] C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. Tvoc: A

translation validator for optimizing compilers. In CAV, pages 291–295, 2005.

https://cse.iitkgp.ac.in/~chitta/pubs/rep/thesisBench.zip
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisBench.zip
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisBench.zip

BIBLIOGRAPHY 217

[23] E. Best and R. R. Devillers. Synthesis of persistent systems. In Application and

Theory of Petri Nets and Concurrency - 35th International Conference, PETRI

NETS 2014, Tunis, Tunisia, June 23-27, 2014. Proceedings, pages 111–129,

2014.

[24] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Pluto: A prac-

tical and fully automatic polyhedral program optimization system. In PLDI 08,

2008.

[25] A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algo-

rithmic verification. In 16th Annual IEEE Symposium on Logic in Computer

Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings, pages

399–408, 2001.

[26] F. Brandner and Q. Colombet. Elimination of parallel copies using code mo-

tion on data dependence graphs. Computer Languages, Systems & Structures,

39(1):25–47, 2013.

[27] R. Camposano. Path-based scheduling for synthesis. IEEE transactions on

computer-Aided Design of Integrated Circuits and Systems, Vol 10 No 1:85–

93, Jan. 1991.

[28] L. Chang, X. He, and S. M. Shatz. A methodology for modeling multi-agent

systems using nested petri nets. International Journal of Software Engineering

and Knowledge Engineering, 22(7):891–926, 2012.

[29] B. Charron-Bost, S. Merz, A. Rybalchenko, and J. Widder. Formal verification

of distributed algorithms (dagstuhl seminar 13141). Dagstuhl Reports, 3(4):1–

16, 2013.

[30] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Formal verification for em-

bedded system designs. Design Automation for Embedded Systems, 8:139–153,

2003.

[31] T.-H. Chiang and L.-R. Dung. Verification method of dataflow algorithms in

high-level synthesis. J. Syst. Softw., 80(8):1256–1270, 2007.

[32] A. Chutinan and B. H. Krogh. Verification of infinite-state dynamic systems

using approximate quotient transition systems. IEEE Trans. Automat. Contr.,

46(9):1401–1410, 2001.

218 BIBLIOGRAPHY

[33] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new sym-

bolic model checker. International Journal on Software Tools for Technology

Transfer, 2(4):410–425, 2000.

[34] J. Cockx, K. Denolf, B. Vanhoof, and R. Stahl. Sprint: a tool to generate

concurrent transaction-level models from sequential code. EURASIP J. Appl.

Signal Process., 2007(1):1–15, 2007.

[35] R. Cordone, F. Ferrandi, M. D. Santambrogio, G. Palermo, and D. Sciuto. Us-

ing speculative computation and parallelizing techniques to improve scheduling

of control based designs. In Proceedings of the 2006 Asia and South Pacific De-

sign Automation Conference, ASP-DAC ’06, pages 898–904, Piscataway, NJ,

USA, 2006. IEEE Press.

[36] A. Corradini, L. Ribeiro, F. L. Dotti, and O. M. Mendizabal. A formal model for

the deferred update replication technique. In Trustworthy Global Computing -

8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-

31, 2013, Revised Selected Papers, pages 235–253, 2013.

[37] L. Cortes, P. Eles, and Z. Peng. Verification of embedded systems using a petri

net based representation. In System Synthesis, 2000. Proceedings. The 13th

International Symposium on, pages 149–155, 2000.

[38] L. A. Cortés, P. Eles, and Z. Peng. Modeling and formal verification of em-

bedded systems based on a petri net representation. JSA, 49(12-15):571–598,

2003.

[39] S. A. da Costa and L. Ribeiro. Verification of graph grammars using a logical

approach. Sci. Comput. Program., 77(4):480–504, 2012.

[40] A. Darte and G. Huard. Loop shifting for loop compaction. J. Parallel Pro-

gramming, 28(5):499–534, 2000.

[41] P. C. Diniz and J. M. P. Cardoso. Code transformations for embedded recon-

figurable computing architectures. In Generative and Transformational Tech-

niques in Software Engineering III, pages 322–344, 2009.

[42] L. C. V. Dos Santos, M. J. M. Heijligers, C. A. J. Van Eijk, J. Van Eijnhoven,

and J. A. G. Jess. A code-motion pruning technique for global scheduling. ACM

Trans. Des. Autom. Electron. Syst., 5(1):1–38, 2000.

BIBLIOGRAPHY 219

[43] L. C. V. Dos. Santos and J. Jress. A reordering technique for efficient code

motion. In Procs. of the 36th ACM/IEEE Design Automation Conference, DAC

’99, pages 296–299, New York, NY, USA, 1999. ACM.

[44] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing

bisimulation equivalence. Theor. Comput. Sci., 311(1-3):221–256, 2004.

[45] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentellni. Design

of embedded systems: Formal models, validation and synthesis. Proceedings

of the IEEE, 85(3):366–390, 1997.

[46] P. Eles, Z. Peng, and D. Karlsson. Formal verification in a component-based

reuse methodology. In Proceedings of the 15th International Symposium on

System Synthesis (ISSS 2002), October 2-4, 2002, Kyoto, Japan, pages 156–

161, 2002.

[47] J. Fernandez and L. Mounier. "on the fly" verification of behavioural equiva-

lences and preorders. In Computer Aided Verification, pages 181–191, 1991.

[48] J. Fisher. Trace scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, C-30(7):478 –490, july 1981.

[49] K. Fisler and M. Y. Vardi. Bisimulation minimization in an automata-theoretic

verification framework. In Formal Methods in Computer-Aided Design, pages

115–132, 1998.

[50] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Pro-

ceedings the 19th Symposium on Applied Mathematics, pages 19–32, Provi-

dence, R.I., 1967. American Mathematical Society. Mathematical Aspects of

Computer Science.

[51] B. Freisleben and T. Kielmann. Automated transformation of sequential divide-

and-conquer algorithms into parallel programs. Computers and Artificial Intel-

ligence, 14:579–596, 1995.

[52] M. Girkar and C. D. Polychronopoulos. Automatic extraction of functional par-

allelism from ordinary programs. IEEE Trans. Parallel Distrib. Syst., 3(2):166–

178, 1992.

220 BIBLIOGRAPHY

[53] R. Gupta and M. Soffa. Region scheduling: an approach for detecting and redis-

tributing parallelism. IEEE Transactions on Software Engineering, 16(4):421

–431, apr 1990.

[54] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Dynamic conditional branch bal-

ancing during the high-level synthesis of control-intensive designs. In Proceed-

ings of DATE’03, pages 270–275, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[55] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Dynamically increasing the scope

of code motions during the high-level synthesis of digital circuits. IEE Pro-

ceedings: Computer and Digital Technique, 150(5):330–337, September 2003.

[56] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-level synthesis

framework for applying parallelizing compiler transformations. In Proc. of Int.

Conf. on VLSI Design, pages 461–466, Washington, DC, USA, Jan 2003. IEEE

Computer Society.

[57] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Using global code motions to

improve the quality of results for high-level synthesis. IEEE Transactions on

CAD of ICS, 23(2):302–312, Feb 2004.

[58] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. Coordinated parallelizing com-

piler optimizations and high-level synthesis. ACM Transactions on Design Au-

tomation of Electronic Systems (TODAES), 9(4):1–31, October 2004.

[59] S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau. Dynamic

common sub-expression elimination during scheduling in high-level synthesis.

In Proceedings of the 15th international symposium on System Synthesis, ISSS

’02, pages 261–266, New York, NY, USA, 2002. ACM.

[60] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau. Conditional spec-

ulation and its effects on performance and area for high-level synthesis. In

International Symposium on System Synthesis, pages 171–176, 2001.

[61] S. Gupta, N. Savoiu, S. Kim, N. Dutt, R. Gupta, and A. Nicolau. Speculation

techniques for high level synthesis of control intensive designs. In Proceedings

of DAC’01, pages 269–272, 2001.

BIBLIOGRAPHY 221

[62] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow

programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, Sep

1991.

[63] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S. Liao, and M. S. Lam. Inter-

procedural parallelization analysis in SUIF. ACM Trans. Program. Lang. Syst.,

27(4):662–731, 2005.

[64] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,

E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the

suif compiler. Computer, 29(12):84–89, 1996.

[65] J. He and T. Hoare. CSP is a retract of CCS. Theor. Comput. Sci., 411(11-

13):1311–1337, 2010.

[66] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23:279–

295, May 1997.

[67] Y. Hu, C. Barrett, B. Goldberg, and A. Pnueli. Validating more loop optimiza-

tions. Electronic Notes in Theoretical Computer Science, 141(2):69–84, 2005.

Proceedings of the Fourth International Workshop on Compiler Optimization

meets Compiler Verification (COCV 2005).

[68] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,

and D. M. Lavery. The superblock: An effective technique for vliw and

superscalar compilation. The Journal of Supercomputing, 7:229–248, 1993.

10.1007/BF01205185.

[69] R. Jain, A. Majumdar, A. Sharma, and H. Wang. Empirical evaluation of

some high-level synthesis scheduling heuristics. In Proceedings of the 28th

ACM/IEEE Design Automation Conference, DAC ’91, pages 686–689, New

York, NY, USA, 1991. ACM.

[70] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools

for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.

Transf., 9(3):213–254, May 2007.

[71] N. E. Johnson. Code Size Optimization for Embedded Processors. PhD thesis,

University of Cambridge, 2004.

222 BIBLIOGRAPHY

[72] M. Kandemir, S. W. Son, and G. Chen. An evaluation of code and data opti-

mizations in the context of disk power reduction. In ISLPED ’05: Proceedings

of the 2005 international symposium on Low power electronics and design,

pages 209–214, 2005.

[73] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of compiler

optimizations on system power. IEEE Trans. Very Large Scale Integr. Syst.,

9:801–804, December 2001.

[74] C. Karfa, C. Mandal, and D. Sarkar. Formal verification of code motion tech-

niques using data-flow-driven equivalence checking. ACM Trans. Design Au-

tom. Electr. Syst., 17(3):30, 2012.

[75] C. Karfa, C. Mandal, D. Sarkar, S. Pentakota, and C. Reade. A formal ver-

ification method of scheduling in high-level synthesis. In 7th International

Symposium on Quality Electronic Design, 2006., pages 71–78, March 2006.

[76] T. Kim and X. Liu. A functional unit and register binding algorithm for inter-

connect reduction. Trans. Comp.-Aided Des. Integ. Cir. Sys., 29:641–646, April

2010.

[77] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal verification of schedul-

ing process using finite state machines with datapath (fsmd). In Proceedings

of the 5th International Symposium on Quality Electronic Design, ISQED ’04,

pages 110–115, Washington, DC, USA, 2004. IEEE Computer Society.

[78] Y. Kim and N. Mansouri. Automated formal verification of scheduling with

speculative code motions. In Proceedings of the 18th ACM Great Lakes sym-

posium on VLSI, GLSVLSI ’08, pages 95–100, New York, NY, USA, 2008.

ACM.

[79] J. C. King. Program correctness: On inductive assertion methods. IEEE Trans.

Software Eng., 6(5):465–479, 1980.

[80] K. Klai, S. Haddad, and J. Ilié. Modular verification of petri nets properties: A

structure-based approach. In Formal Techniques for Networked and Distributed

Systems - FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei,

Taiwan, October 2-5, 2005, Proceedings, pages 189–203, 2005.

BIBLIOGRAPHY 223

[81] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion. In PLDI, pages

224–234, 1992.

[82] J. Knoop and B. Steffen. Code motion for explicitly parallel programs. PPoPP

’99, pages 13–24, 1999.

[83] C. M. Kunal Banerjee and D. Sarkar. Deriving bisimulation relations from path

extension based equivalence checkers. In WEPL, pages 1–2, 2015.

[84] S. Kundu, S. Lerner, and R. Gupta. Validating high-level synthesis. In Pro-

ceedings of the 20th international conference on Computer Aided Verification,

CAV ’08, pages 459–472, Berlin, Heidelberg, 2008. Springer-Verlag.

[85] S. Kundu, S. Lerner, and R. Gupta. Translation validation of high-level synthe-

sis. IEEE Transactions on CAD of ICS, 29(4):566–579, 2010.

[86] G. Lakshminarayana, K. Khouri, and N. Jha. Wavesched: A novel schedul-

ing technique for control-flow intensive behavioural descriptions. In Proc. of

ICCAD, pages 244–250, Nov 1997.

[87] G. Lakshminarayana, A. Raghunathan, and N. Jha. Incorporating speculative

execution into scheduling of control-flow-intensive design. IEEE Transactions

on CAD of ICS, 19(3):308–324, March 2000.

[88] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Proceed-

ings of the 19th annual international symposium on Computer architecture,

ISCA ’92, pages 46–57, New York, NY, USA, 1992. ACM.

[89] C.-H. Lee, C.-H. Shih, J.-D. Huang, and J.-Y. Jou. Equivalence checking of

scheduling with speculative code transformations in high-level synthesis. In

Asia and South Pacific Design Automation Conference, pages 497–502, 2011.

[90] C.-H. Lee, C.-H. Shih, J.-D. Huang, and J.-Y. Jou. Equivalence checking of

scheduling with speculative code transformations in high-level synthesis. In

(ASP-DAC), 2011 16th Asia and South Pacific, pages 497–502, 2011.

[91] J.-H. Lee, Y.-C. Hsu, and Y.-L. Lin. A new integer linear programming for-

mulation for the scheduling problem in data path synthesis. In Procs. of the

International Conference on Computer-Aided Design, pages 20 –23, Washing-

ton, DC, USA, nov 1989. IEEE Computer Society.

224 BIBLIOGRAPHY

[92] Q. Li, L. Shi, J. Li, C. J. Xue, and Y. He. Code motion for migration mini-

mization in STT-RAM based hybrid cache. In IEEE Computer Society Annual

Symposium on VLSI, pages 410–415, 2012.

[93] T. Li, Y. Guo, W. Liu, and M. Tang. Translation validation of scheduling in

high level synthesis. In ACM Great Lakes Symposium on VLSI, pages 101–106,

2013.

[94] D. Lime, O. H. Roux, C. Seidner, and L. Traonouez. Romeo: A parametric

model-checker for petri nets with stopwatches. In Tools and Algorithms for the

Construction and Analysis of Systems, 15th International Conference, TACAS

2009, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, pages

54–57, 2009.

[95] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Kogakusha,

Tokyo, 1974.

[96] N. Mansouri and R. Vemuri. A methodology for automated verification of

synthesized rtl designs and its integration with a high-level synthesis tool. In

Proceedings of the Second International Conference on Formal Methods in

Computer-Aided Design, FMCAD ’98, pages 204–221, London, UK, 1998.

Springer-Verlag.

[97] J. McCarthy. Towards a mathematical science of computation. In IFIP

Congress, pages 21–28, 1962.

[98] V. Menon, K. Pingali, and N. Mateev. Fractal symbolic analysis. ACM Trans.

Program. Lang. Syst., 25(6):776–813, 2003.

[99] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[100] S.-M. Moon and K. Ebcioğlu. An efficient resource-constrained global schedul-

ing technique for superscalar and vliw processors. In Proceedings of the 25th

annual international symposium on Microarchitecture, MICRO 25, pages 55–

71, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[101] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1997.

BIBLIOGRAPHY 225

[102] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, Apr 1989.

[103] M. Naija, S. B. Ahmed, and J. Bruel. New schedulability analysis for real-

time systems based on MDE and petri nets model at early design stages. In

ICSOFT-EA 2015 - Proceedings of the 10th International Conference on Soft-

ware Engineering and Applications, Colmar, Alsace, France, 20-22 July, 2015.,

pages 330–338, 2015.

[104] K. S. Namjoshi, G. Tagliabue, and L. D. Zuck. A witnessing compiler: A proof

of concept. In Runtime Verification, pages 340–345, 2013.

[105] S. Narayanan and S. A. McIlraith. Simulation, verification and automated com-

position of web services. In Proceedings of the 11th International Conference

on World Wide Web, WWW ’02, pages 77–88, New York, NY, USA, 2002.

ACM.

[106] G. C. Necula. Translation validation for an optimizing compiler. In PLDI,

pages 83–94, 2000.

[107] A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to percolation

scheduling. In ICPP 1993. International Conference on Parallel Processing,

1993, volume 2, pages 120 –124, aug. 1993.

[108] C. A. Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[109] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS,

pages 151–166, 1998.

[110] A. Pnueli, O. Strichman, and M. Siegel. Translation validation for synchronous

languages. In ICALP, pages 235–246, 1998.

[111] R. Radhakrishnan, E. Teica, and R. Vemuri. Verification of basic block sched-

ules using rtl transformations. In Proceedings of the 11th IFIP WG 10.5 Ad-

vanced Research Working Conference on Correct Hardware Design and Verifi-

cation Methods, CHARME ’01, pages 173–178, London, UK, 2001. Springer-

Verlag.

[112] M. Rahmouni and A. A. Jerraya. Formulation and evaluation of scheduling

techniques for control flow graphs. In Proceedings of EuroDAC’95, pages 386–

391, Brighton, 18-22 September 1995.

226 BIBLIOGRAPHY

[113] M. Rakotoarisoa and E. Pastor. BMC encoding for concurrent systems. In

XXVII International Conference of the Chilean Computer Science Society

(SCCC 2008), 10-14 November 2008, Punta Arenas, Chile, pages 127–134,

2008.

[114] C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez. Optimal scheduling

strategies in a multiprocessor system. IEEE Trans. on Computer, C-21(2):137–

146, Feb. 1972.

[115] T. Raudvere, I. Sander, and A. Jantsch. Application and verification of local

nonsemantic-preserving transformations in system design. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 27(6):1091 –

1103, june 2008.

[116] L. Ribeiro, O. M. dos Santos, F. L. Dotti, and L. Foss. Correct transformation:

From object-based graph grammars to PROMELA. Sci. Comput. Program.,

77(3):214–246, 2012.

[117] M. Rim, Y. Fann, and R. Jain. Global scheduling with code motions for high-

level synthesis applications. IEEE Transactions on VLSI Systems, 3(3):379–

392, Sept. 1995.

[118] M. Rinard and P. Diniz. Credible compilation. Technical Report MIT-LCS-TR-

776, MIT, 1999.

[119] C. Rodríguez and S. Schwoon. Verification of petri nets with read arcs. In CON-

CUR 2012 - Concurrency Theory - 23rd International Conference, CONCUR

2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, pages

471–485, 2012.

[120] O. Ruthing, J. Knoop, and B. Steffen. Sparse code motion. In IEEE POPL,

pages 170–183, 2000.

[121] D. Sarkar and S. C. De Sarkar. A theorem prover for verifying iterative pro-

grams over integers. IEEE Trans. Software Eng., 15(12):1550–1566, 1989.

[122] K. Singh. Construction of Petri net based models for C programs,

M.Tech. Dissertation, Dept. of Computer Sc. & Engg., I.I.T., Kharagpur, IN-

DIA. https://cse.iitkgp.ac.in/~chitta/pubs/rep/thesisKulwant.pdf, https://github.

https://cse.iitkgp.ac.in/~chitta/pubs/rep/thesisKulwant.pdf
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf

BIBLIOGRAPHY 227

com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf, May

2016.

[123] SPIN.

[124] K. Strehl and L. Thiele. Interval diagrams for efficient symbolic verification of

process networks. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(8):939 –956, aug 2000.

[125] A. Stump, C. W. Barrett, and D. L. Dill. Cvc: A cooperating validity checker.

In CAV ’02: Proceedings of the 14th International Conference on Computer

Aided Verification, pages 500–504. Springer-Verlag, 2002.

[126] I. Suzuki and T. Murata. A method for stepwise refinement and abstraction of

petri nets. J. Comput. Syst. Sci., 27(1):51–76, 1983.

[127] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting

bisimulations. Formal Methods in System Design, 18(1):25–68, 2001.

[128] J.-B. Tristan and X. Leroy. Verified validation of lazy code motion. In Proceed-

ings of the 2009 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’09, pages 316–326, New York, NY, USA, 2009.

ACM.

[129] A. Turjan. Compiling Nested Loop Programs to Process Networks. PhD thesis,

Leiden University, 2007.

[130] A. Turjan, B. Kienhuis, and E. Deprettere. Translating affine nested-loop pro-

grams to process networks. In CASES ’04: Proceedings of the 2004 inter-

national conference on Compilers, architecture, and synthesis for embedded

systems, pages 220–229, 2004.

[131] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Nardelli. Com-

mon compiler optimisations are invalid in the C11 memory model and what we

can do about it. In POPL, pages 209–220, 2015.

[132] M. Westergaard. Verifying parallel algorithms and programs using coloured

petri nets. T. Petri Nets and Other Models of Concurrency, 6:146–168, 2012.

https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf
https://github.com/soumyadipcsis/Equivalence-checker/blob/master/thesisKulwant.pdf

228 BIBLIOGRAPHY

[133] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref- A

symbolic bisimulation tool box. In Automated Technology for Verification and

Analysis, pages 477–492, 2006.

[134] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to

maximize parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471, 1991.

[135] Y.-P. You and S.-H. Wang. Energy-aware code motion for gpu shader proces-

sors. ACM Trans. Embed. Comput. Syst., 13(3):49:1–49:24, 2013.

[136] S. ZamanZadeh, M. Najibi, and H. Pedram. Pre-synthesis optimization for

asynchronous circuits using compiler techniques. In Advances in Computer

Science and Engineering, volume 6 of Communications in Computer and In-

formation Science, pages 951–954. Springer Berlin Heidelberg, 2009.

[137] J. Zhang and B. H. C. Cheng. Model-based development of dynamically adap-

tive software. In Proceedings of the 28th International Conference on Software

Engineering, ICSE ’06, pages 371–380, New York, NY, USA, 2006. ACM.

[138] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formal verifica-

tion of SSA-based optimizations for LLVM. In Programming Language Design

and Implementation, pages 175–186, 2013.

List of Publications out of this work

Journal/conference papers:

1. Soumyadip Bandyopadhyay, Dipankar Sarkar, Chittaranjan Mandal; “An Efficient
Equivalence Checking Method for Petri net based Models of Programs;” International
Conference on Software Engineering (ICSE-2015), pages: 827�828.

2. Soumyadip Bandyopadhyay, Dipankar Sarkar, Kunal Banerjee, Chittaranjan Man-
dal, Krishnam Raju; “A Path Construction Algorithm for Translation Validation using
PRES+ Models;” Parallel Processing Letters Vol. 26, No. 02, pages: 1�25.

3. Soumyadip Bandyopadhyay, Dipankar Sarkar, Chittaranjan Mandal; “Validating SPARK:
High Level Synthesis compiler;” IEEE Computer Society Annual Symposium on VLSI
(ISVLSI-2015), pages: 195�198.

4. Soumyadip Bandyopadhyay, Dipankar Sarkar, Kunal Banerjee, Chittaranjan Man-
dal; “A Path-Based Equivalence Checking Method for Petri net based Models of Pro-
grams;” International Conference on Software Engineering and Applications (ICSOFT-
EA-2015), pages: 319�329.

5. Soumyadip Bandyopadhyay, Dipankar Sarkar, Chittaranjan Mandal; “ An efficient
path based equivalence checking for Petri net based models of programs”, India Soft-
ware Engineering Conference, (ISEC 2016), pages:70�79.

Publications in research fora:

It is to be noted that the following dissemination arising out of this work were not pub-
lished as part of the proceedings of conference or workshop; these venues rather aimed to
provide a appropriate platform for young researchers to discuss their works with experts in
their respective research fields; all of these work, however, went through standard peer review
process before being accepted.

1. Soumyadip Bandyopadhyay; “Behavioural verification using Petri net based mod-
els of programs;” ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL): Student Research Competition, Mumbai, India, 2015.

229

230 BIBLIOGRAPHY

2. Soumyadip Bandyopadhyay, Dipankar Sarkar, Chittaranjan Mandal; “Translation Val-
idation using Path-Based Equivalence Checking of Petri net based Models of Pro-
grams;” IMPECS-POPL Workshop on Emerging Research and Development Trends
in Programming Languages (WEPL), Mumbai, India, 2015.

3. Soumyadip Bandyopadhyay; “Translation Validation using Path-Based Equivalence
Checking of Petri net based Models of Programs;” Inter-Research-Institute Student
Seminar in Computer Science (IRISS), Goa, India, 2015.

Bio-data

Soumyadip Bandyopadhyay was born in Taki, North 24 PGS, West Bengal on 25th

of June, 1986. He received the B.Tech. degree in Computer Science and Engineering
from West Bengal University Technology in 2004 He has worked as a Junior Project
Assistance (JPA) in the VLSI Consortium project undertaken by the Advanced VLSI
Design Laboratory, IIT Kharagpur from July 2008 to September 2012 and his cur-
rent research interests include formal verification and software verification . He has
published ten research papers in different reputed IEEE/ACM/World scientific inter-
national journals and conferences. He has received Tata Consultancy Service Ph.D
Fellowship in 2012.

231

	Title Page
	Title Page
	Approval Page
	Certificate Page
	Declaration Page
	Acknowledgement
	Abstract
	Abstract
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Literature Survey
	Code motion transformations
	Loop transformations
	Parallelizing transformations
	Techniques for verification of behavioural transformations
	Objective of the work

	Contributions of the thesis
	Dynamic Cut-point Induced Path Based Equivalence Checking Method
	Static Cut-point Induced Path Based Equivalence Checking
	Thesis Organization

	Literature Survey
	Verification techniques for Petri net based models
	Code motion transformations
	Applications of code motion transformations
	Verification of code motion transformations

	Several parallelizing transformations
	Verification of parallelizing transformations

	Conclusion

	PRES+ models and their computations
	The PRES+ model
	Computations in a PRES+ model
	Computational equivalence between two PRES+ models
	Restrictions of the model and their implications
	Conclusion

	Dynamic cut-point induced path construction method
	Computation paths of a PRES+ model
	Characterization of a path
	Computation in terms of concatenation of parallel paths
	Equivalence checking using paths – An Example

	Path construction algorithm
	Termination of the path construction algorithm
	Complexity analysis of the path construction algorithm
	Soundness of the path construction algorithm
	Completeness of the path construction algorithm

	Experimental Results
	Experimentation using hand constructed models
	Experimentation using an automated model constructor

	Conclusion

	DCP Induced Path Based Equivalence Checking Method
	Validity of dynamic cut-point induced path based equivalence checking
	An Equivalence Checking Method
	Termination of the equivalence checking algorithm
	Complexity analysis of the equivalence checking algorithm
	Soundness of the equivalence checking algorithm

	Experimental Results
	Experimentation using hand constructed models
	Experimentation using the automated model constructor
	Experimental results after introducing errors

	Conclusion

	SCP Induced Path Based Equivalence Checking Method
	Model paths using static cut-points only
	Capturing any computation in terms of Paths
	Validity of Static cut-point induced path based equivalence checking method

	Path construction algorithm
	Termination and complexity analysis of the path construction algorithm
	Soundness of the path construction algorithm
	Completeness of the path construction algorithm

	Static equivalence checking
	Equivalence Checking Algorithm
	Termination of the equivalence checking algorithm
	Complexity analysis of the equivalence checking algorithm
	Soundness of the equivalence checking algorithm

	Experimental Results
	Experimentation using hand constructed models
	Experimentation using the automated model constructor
	Experimental results after introducing errors

	Conclusion

	Conclusion
	Contributions
	Comparison to related work
	Scope for future work
	Conclusion

	Appendix
	List of examples
	List of erroneous program
	List of PRES+ models

	Bibliography

